Advertisement

Archiv der Mathematik

, Volume 19, Issue 1, pp 95–102 | Cite as

Differenzierbare Strukturen auf Mannigfaltigkeiten ohne abzählbare Basis

  • Winfried Koch
  • Dieter Puppe
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. [1]
    H. Grauert, On Levi's problem and the imbedding of real-analytic manifolds. Ann. of Math., II. Ser.68, 460–472 (1958).Google Scholar
  2. [2]
    M. A. Kervaire, A manifold which does not admit any differentiable structure. Comment. Math. Helvet.34, 257–270 (1960).Google Scholar
  3. [3]
    H.Kneser, Analytische Struktur und Abzählbarkeit. Ann. Acad. Sci. Fennicae A/I. 251/5 (1958).Google Scholar
  4. [4]
    H. Kneser undM. Kneser, Reell-analytische Strukturen der Alexandroff-Halbgeraden und der Alexandroff-Geraden. Arch. Math.11, 104–106 (1960).Google Scholar
  5. [5]
    J. Milnor, On manifolds homeomorphic to the 7-sphere. Ann. of Math., II. Sur.64, 399–405 (1956).Google Scholar
  6. [6]
    J. R. Munkres, Obstructions to the smoothing of piecewise-differentiable homeomorphisms. Ann. of Math., II. Ser.72, 521–554 (1960).Google Scholar
  7. [7]
    J. R.Munkres, Elementary differential topology. Ann. Math. Stud. Nr. 54 (1963).Google Scholar
  8. [8]
    J. H. C. Whitehead, Manifolds with transverse fields in euclidean space. Ann. of Math., II. Ser.73, 154–212 (1961).Google Scholar
  9. [9]
    H. Whitney, Analytic extensions of differentiable functions defined in closed sets. Trans. Ammer. Math. Soc.36, 63–89 (1934).Google Scholar
  10. [10]
    H. Whitney, Differentiable manifolds. Ann. of Math., II. Ser.37, 645–680 (1936).Google Scholar
  11. [11]
    H. Kneser, Sur les variétés connexes de dimension 1. Bull. Soc. Math. Belg.10, 19–25 (1958).Google Scholar

Copyright information

© Birkhäuser Verlag 1968

Authors and Affiliations

  • Winfried Koch
    • 1
  • Dieter Puppe
    • 1
  1. 1.Mathematisches InstitutUniversität des Saarlandes

Personalised recommendations