Advertisement

The Visual Computer

, Volume 1, Issue 2, pp 112–117 | Cite as

Minimum area circumscribing Polygons

  • Alok Aggarwal
  • J. S. Chang
  • Chee K. Yap
Article

Abstract

We show that the smallestk-gon circumscribing a convexn-gon can be computed inO(n 2 logn logk) time.

Key words

Geometric algorithms Circumscribing Optimization Convex polygons Minimum area 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boyce JE, Dobkin DP, Drysdale RL, Guibas LJ (1985) Finding extremal polygons. SIAM J Comp 14:134–147zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chazelle BM (1985) Approximation and decomposition of shapes, In: Yap CK, Schwartz J (eds) Advances in Robotics. Vol 1. Lawrence O'Erlbaum Inc.Google Scholar
  3. 3.
    Chang JS, Yap CK (1984) A polynomial solution for potato-peeling and other polygon inclusion and enclosure problems. Proc. of the 25-th Annual Symposium on the Foundations of Computer Science. pp 408–419Google Scholar
  4. 4.
    DePano A (1984) Onk-envelopes and shared edges. Technical Report. Department of Electric Engineering and Computer Science. The Johns Hopkins UniversityGoogle Scholar
  5. 5.
    DePano A, Aggarwal A (1984) Finding restricted K-envelopes for convex polygons. Proc. 22nd Allerton Conf. on Comm. Control and ComputingGoogle Scholar
  6. 6.
    Dobkin DP, Snyder L (1979) On a general method for maximizing and minimizing among certain geometric problems. Proceedings of the Twentieth Annual Symposium on the Foundations of Computer Science. pp 7–19Google Scholar
  7. 7.
    Dobkin DP, Drysdale RL, Guibas LJ (1983) Finding smallest polygons In: Preparata FP (ed) Advances in Computing Research. Jai Press. pp 181–214Google Scholar
  8. 8.
    Dori D, Ben-Bessat M (1983) Circumscribing a convex polygon with polygon of fewer sides with minimal area addition. Comput Vision Graph Image Proc 24:131–159CrossRefGoogle Scholar
  9. 9.
    Freeman H, Shapira R (1975) Determining the minimum area encasing a package. CACM 18:409–413zbMATHMathSciNetGoogle Scholar
  10. 10.
    Klee V, Laskowski MC (1985) Finding the smallest triangles containing the given polygon' J AlgorithmsGoogle Scholar
  11. 11.
    O'Rourke J (1984) Counterexamples to a minimal circumscription algorithm. Manuscript The Johns Hopkins UniversityGoogle Scholar
  12. 12.
    O'Rourke J, Aggarwal A, Madilla S, Baldwin M (1985) An optimal algorithm for finding minimal enclosing triangles. J AlgorithmsGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Alok Aggarwal
    • 1
  • J. S. Chang
    • 2
  • Chee K. Yap
    • 2
  1. 1.IBM T.J. Watson CenterYorktown HeightsUSA
  2. 2.Courant Institute of Mathematical SciencesNew YorkUSA

Personalised recommendations