On the concentration of additive functions

  • I. Z. Ruzsa
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Davenport,Multiplicative number theory (Chicago, 1967).Google Scholar
  2. [2]
    P. Erdős On the distribution functions of additive functions,Ann. of Math.,47 (1946), 1–20.Google Scholar
  3. [3]
    C. G. Esseen, On the Kolmogorov—Rogozin inequality,Z. Wahrscheinlichkeitstheorie verw. Geb.,5 (1966), 210–16.Google Scholar
  4. [4]
    C. G. Esseen On the concentration function of a sum of independent random variables,ibid.,,9 (1967), 290–308.Google Scholar
  5. [5]
    G. Halász, Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen,Acta Math. Acad. Sci. Hungar.,19 (1968), 365–403.Google Scholar
  6. [6]
    G. Halász, On the distribution of additive arithmetical functions,Acta Arithmetica,27 (1975), 143–152.Google Scholar
  7. [7]
    D. H. Hyers, On the stability of the linear functional equation,Proc. Nat. Ac. Sci. USA,27 (1941), 222–4.Google Scholar
  8. [8]
    M. Kneser, Summenmenge in lokalkompakten abelschen Gruppen,Math. Zeitschrift,66 (1956), 88–110.Google Scholar
  9. [9]
    Y. Meyer,Algebraic numbers and harmonic analysis, North Holland (Amsterdam-London, 1972).Google Scholar
  10. [10]
    B. A. Rogozin, On the increase of dispersion of sums of independent random variables,Theor. Probab. Appl.,6 (1961), 97–99.Google Scholar
  11. [11]
    B. Rosén, On the asymptotic distribution of sums of independent random variables,Ark. Math.,4 (1961), 323–32.Google Scholar

Copyright information

© Akadémiai Kiadó 1980

Authors and Affiliations

  • I. Z. Ruzsa
    • 1
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations