Recent results in topological graph theory

  • F. Harary


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Auslander, T. A. Brown andJ. W. T. Youngs, The imbedding of graphs in manifolds,J. Math. Mech.,12 (1963), pp. 629–634.Google Scholar
  2. [2]
    J. Battle, F. Harary andY. Kodama, Every planar graph with nine points has a nonplanar complement,Bull. Amer. Math. Soc.,68 (1962), pp. 569–571.Google Scholar
  3. [3]
    J. Battle, F. Harary, Y. Kodama andJ. W. T. Youngs, Additivity of the genus of a graph,Bull. Amer. Math. Soc.,68 (1962), pp. 565–568.Google Scholar
  4. [4]
    L. W. Beineke andF. Harary, On the thickness of the complete graph,Bull. Amer. Math. Soc.,70 (1964), pp. 618–620. The thickness of the complete graph. To appear inCanadian J. Math. Google Scholar
  5. [5]
    L. W. Beineke andF. Harary, Some inequalities involving the genus of a graph and its thicknesses, to appear inProc. Glasgow Math. Assoc., 1964.Google Scholar
  6. [6]
    L. W. Beineke andF. Harary, The genus of then-cube, to appear inCanadian J. Math. Google Scholar
  7. [7]
    L. W. Beineke, F. Harary andJ. W. Moon, On the thickness of the complete bipartite graph,Proc. Camb. Phil. Soc.,60 (1964), pp. 1–5.Google Scholar
  8. [8]
    D. E. Cohen, F. Harary andY. Kodama, On the embedding of complete graphs in orientable surfaces,Mathematika,10 (1963), pp. 79–83.Google Scholar
  9. [9]
    F. Harary, A complementary problem on nonplanar graphs,Math. Mag.,35 (1962), pp. 301–303.Google Scholar
  10. [10]
    F. Harary, The maximum connectivity of a graph.,Proc. Natl. Acad. Sci., U.S.A. 48 (1962), pp. 1142–1146.Google Scholar
  11. [11]
    F. Harary andA. Hill, On the number of crossings in a complete graph,Proc. Edinburgh Math. Soc.,13 (1963), pp. 333–338.Google Scholar
  12. [12]
    F. Harary andY. Kodama, On the genus of ann-connected graph,Fund. Math.,54 (1963). pp. 7–13.Google Scholar
  13. [13]
    C. Kuratowski, Sur le problème des courbes gauches en topologie,Fund. Math.,15 (1930), pp. 271–283.Google Scholar
  14. [14]
    G. Ringel,Färbungsprobleme auf Flächen und Graphen (VEB Deutscher Verlag der Wissenschaften, Berlin, 1959), Über das Problem der Nachbargebiete, auf orientierbaren Flächen,Abhandlung Math. Sem. Univ. Hamburg,25 (1961), pp. 105–127.Google Scholar
  15. [15]
    W. T. Tutte, The non-biplanar character of the complete 9-graph,Canad. Math. Bull.,6, (1963), pp. 319–330.Google Scholar
  16. [16]
    W. T. Tutte, The thickness of a graph,Indag. Math.,25 (1963), pp. 567–577.Google Scholar
  17. [17]
    J. W. T. Youngs, Minimal embeddings and the genus of a graph,J. Math. Mech.,12 (1963), pp. 303–315.Google Scholar
  18. [18]
    K. Zarankiewicz, On a problem of P. Turán concerning graphs,Fund. Math.,41 (1954), pp. 137–145.Google Scholar
  19. [19]
    F. Harary andW. T. Tutte, A dual form of Kuratowski's theorem, to appear inCanadian Math. Bull. Google Scholar

Copyright information

© Akadémiai Kiadó 1964

Authors and Affiliations

  • F. Harary
    • 1
    • 2
  1. 1.The University of MichiganAnn ArborUSA
  2. 2.University CollegeLondon

Personalised recommendations