The Visual Computer

, Volume 8, Issue 5–6, pp 278–291 | Cite as

Normal estimation in 3 D discrete space

  • Roni Yagel
  • Daniel Cohen
  • Arie Kaufman


Three-dimensional voxel-based objects are inherently discrete and do not maintain any notion of a continuous surface or normal values, which are crucial for the simulation of light behavior. Thus, in volume rendering, the normal vector of the displayed surfaces must be estimated prior to rendering. We survey several methods for normal estimation and analyze their performance. One unique method, the context-sensitive approach, employs segmentation and segment-bounded operators that are based on object and slope discontinuities in order to achieve high fidelity normal estimation for rendering volumetric objects.

Key words

Discrete shading Volume rendering Filtering Segmentation Volume visualization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergman L, Fuchs H, Grant E, Spach S (1986) Image rendering by adaptive refinement. Comput Graph 20(4):29–37Google Scholar
  2. Bright S, Laflin S (1986) Shading of solid voxel models. Comput Graph Forum 5(2):131–138Google Scholar
  3. Bryant J, Krumvieda C (1989) Display of discrete 3 D binary objects: I-shading. Computers and Graphics 13(4):441–444Google Scholar
  4. Chen L, Herman GT, Reynolds RA, Udupa JK (1985) Surface shading in the Cuberille environment. IEEE Comput Graph Appl 5(12):33–43Google Scholar
  5. Cohen D, Kaufman A (1990) Scan-conversion algorithms for linear and quadratic objects. In: Kaufman A (ed) Volume visualization. IEEE Computer Society Press, Los Alamitos, pp 280–301Google Scholar
  6. Cohen D, Kaufman A, Bakalash R, Bergman S (1990) Real-time discrete shading. The Visual Computer 6(1):16–27Google Scholar
  7. Goldwasser SM (1986) Rapid techniques for the display and manipulation of 3-D biomedical data. Proc NCGA Conf II:115–149Google Scholar
  8. Goldwasser SM, Reynolds RA, Talton DA, Walsh ES (1989) High performance graphics processors for medical imaging applications. In: Dew PM, Earnshaw RA, Heywood TR (eds) Parallel processing for computer vision and display. Addison Wesley, Reading, pp 461–470Google Scholar
  9. Gordon D, Reynolds RA (1985) Image space shading of 3-dimensional objects. Comput Graph and Image Proc 29(3):361–376Google Scholar
  10. Grimson WEL (1981) From images to surfaces: a computational study of human early visual system (chap 9). MIT Press, CambridgeGoogle Scholar
  11. Grimson WEL, Pavlidis T (1985) Discontinuity detection for visual surface reconstruction. Comput Vision, Graph and Image Proc 30:316–330Google Scholar
  12. Hoehne KH, Bernstein R (1986) Shading 3 D-images from CT using gray-level gradients. IEEE Trans Med Imaging MI 5(1):45–47Google Scholar
  13. Hoehne KH, Bomans M, Pommert A, Riemer M, Schiers C, Tiede U, Wiebecke G (1990) 3 D-visualization of tomographic volume data using the generalized voxel model. The Visual Computer 6(1):28–37Google Scholar
  14. Horn BKP (1982) Hill shading and the reflection map. Geo-Processing 2:65–146Google Scholar
  15. Kaufman A (1987) Efficient algorithms for 3 D scan-conversion of parametric curves, surfaces, and volumes. Comput Graph 21(4):171–179MathSciNetGoogle Scholar
  16. Kaufman A (1992) Thevoxblt engine: a voxel frame buffer processor. In: Kuijk AAM, Strasser W (eds) Advances in computer graphics hardware III. Springer, Berlin Heidelberg New YorkGoogle Scholar
  17. Kaufman A, Yagel R, Cohen D (1990) Intermixing surface and volume rendering. In: Hoehne KH, Fuchs H, Pizer SM (eds) 3 D imaging in medicine. Algorithms, systems, applications. Springer, Berlin Heidelberg New York, pp 217–227Google Scholar
  18. Magnusson M, Lenz R, Danielsson PE (1988) Evaluation of methods for shaded display of CT volumes. Proc 9th Int Conf Pattern Recognition II:1287–1294Google Scholar
  19. Pavlidis T (1982) Algorithms for graphics and image processing. Computer Science Press, RockvilleGoogle Scholar
  20. Pommert A, Tiede U, Wiebecke G, Hoehne KH (1990) Surface shading in tomographic volume visualization: a comparative study. Proc 1st Conf Visualization in Biomedical Computing, pp 19–26Google Scholar
  21. Potmesil M, Chakravarty I (1982) Synthetic image generation with a lens and aperture camera model. ACM Trans Graph 1:85–108Google Scholar
  22. Rosenfeld A, Kak AC (1982) Digital picture processing. Academic Press, Boston, MAGoogle Scholar
  23. Saito T, Takahashi T (1990) Comprehensive rendering of 3 D shapes. Comput Graph 24(4):197–206Google Scholar
  24. Schlusselberg DS, Smith K, Woodward DJ (1986) Three-dimensional display of medical image volumes. Proc NCGA Conf III:114–123Google Scholar
  25. Tam YW, Davis WA (1988) Display of 3 D medical images. Proc Graphics Interface, pp 78–86Google Scholar
  26. Tiede U, Hoehne KH, Bomans M, Pommert A, Riemer M, Wiebecke G (1990) Investigation of medical 3 D-rendering algorithms. IEEE Comput Graph Appl 10(3):41–53Google Scholar
  27. Torrance KE, Sparrow EM (1967) Theory for off-specular reflection from roughened surfaces. J Optical Soc Am 57:1105–1114Google Scholar
  28. Udupa JK, Hung HM (1990) Surface versus volume rendering: a comparative assessment. Proc 1st Conf Visualization in Biomedical Computing. pp 83–91Google Scholar
  29. Webber RE (1990) Ray tracing voxel based data via biquadratic local surface interpolation. The Visual Computer 6(1):8–15Google Scholar
  30. Yagel R, Cohen D, Kaufman A (1992) Discrete ray tracing. To appear in IEEE Comput Graph ApplGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Roni Yagel
    • 1
  • Daniel Cohen
    • 2
  • Arie Kaufman
    • 3
  1. 1.Department of Computer and Information ScienceThe Ohio State UniversityColumbusUSA
  2. 2.Department of Computer ScienceTel-Aviv UniversityRamat AvivIsrael
  3. 3.Department of Computer ScienceState University of New York at Stony BrookStohy BrookUSA

Personalised recommendations