Advertisement

Geometric & Functional Analysis GAFA

, Volume 4, Issue 6, pp 718–748 | Cite as

Symplectic homology via generating functions

  • Lisa Traynor
Article

Keywords

Symplectic Homology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]V.I. Arnold, Mathematical Methods of Classical Mechanics, 2nd Edition, Springer-Verlag, New York (1989).Google Scholar
  2. [C1]M. Chaperon, Une idée du type “géodésiques brisées” pour les systèmes hamiltoniens, C.R. Acad. Sc. Paris t. 298, Série I, n0 13 (1984), 293–296.Google Scholar
  3. [C2]M. Chaperon, Phases génératrices en géométrie symplectique, Publication de l'institut de recherche mathématique avancée, Strasbourg, vol 41 (1989).Google Scholar
  4. [CiFH]K. Cieliebak, A. Floer, H. Hofer, Symplectic homology II: General symplectic manifolds, preprint (1994).Google Scholar
  5. [DNFo]B. Doubrovine, S. Novikov, A. Fomenko, Géométrie Contemporaine: Méthodes et Applications, 3e partie, Méthodes de la théorie de l'homologie, Editions Mir, Moscow (1987).Google Scholar
  6. [EH]I. Ekeland, H. Hofer, Symplectic topology and hamiltonian dynamics II, Math. Z. 203 (1990), 553–567.Google Scholar
  7. [El]Ya. Eliashberg, University of Arkansas Lecture Series on Symplectic Topology, (April 1992).Google Scholar
  8. [ElGr]Ya. Eliashberg, M. Gromov, Convex symplectic manifolds, Proc. Symp. Pure Math 52:2 (1991), 135–162.Google Scholar
  9. [FH]A. Eloer, H. Hofer, Symplectic homology I: Open sets in ℂn, Math. Z. 215: 1 (1994), 37–88.Google Scholar
  10. [FHWy]A. Floer, H. Hofer, K. Wysocki, Applications of symplectic homology I, preprint (1992).Google Scholar
  11. [G]A. Givental, A symplectic fixed point theorem for toric manifolds, to appear in A. Floer Memorial Volume (1992).Google Scholar
  12. [L]S. Lang, Algebra, Third Edition, Addison-Wesley Publishing Company, Reading, MA (1993).Google Scholar
  13. [LaS]F. Laudenbach, J.C. Sikorav, Persistance d'intersection avec la section nulle au cours d'une isotopie hamiltonienne dans un fibré cotangent, Invent. Math. 82 (1985), 349–357.Google Scholar
  14. [S]J. C. Sikorav, Sur les immersions lagrangiennes dans un fibré cotangent admettant une phase génétrice globale, C. R. Acad. Sc. Paris t. 302, Série I, n03 (1986), 119–122.Google Scholar
  15. [T]D. Theret, Thèse, Université Denis Diderot (Paris 7), to appear, 1994.Google Scholar
  16. [V]C. Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann. 292:4 (1992), 685–710.Google Scholar
  17. [W]A. Weinstein, Lectures on Symplectic Manifolds, CBMS Reg. Conf. Series in Math. 29, Amer. Math. Soc., Providence, R.I. (1979).Google Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • Lisa Traynor
    • 1
  1. 1.Mathematics DepartmentBryn Mawr CollegeBryn MawrUSA

Personalised recommendations