m-adic spaces

  • R. H. Marty


Open Subset Compact Space Discrete Space Continuous Image Elementary Neighbourhood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. S. Alexandroff, On the theory of topological spaces,Dokl. Akad. Nauk SSSR,2 (1936), pp. 51–54 (Russian).Google Scholar
  2. [2]
    P. S. Alexandroff andP. S. Urysohn, Mémoire sur les espaces topologiques compacts,Verh. Akad. van Wetensch. Amsterdam,14 (1929), pp. 1–96.Google Scholar
  3. [3]
    M. Bockstein, Un théorème de séparabilité pour les produits topologiques,Fund. Math.,35 (1948), pp. 242–246.zbMATHMathSciNetGoogle Scholar
  4. [4]
    B. Efimov, Dyadic bicompacta,Trans. Moscow Math. Soc.,14 (1965), pp. 229–267.MathSciNetGoogle Scholar
  5. [5]
    R. Engelking,Outline of general topology, Amsterdam, New York, 1968.Google Scholar
  6. [6]
    J. Isbell,Uniform spaces, Providence, 1964.Google Scholar
  7. [7]
    E. Marczewski, Séparabilité et multiplication cartésienne des espaces topologiques,Fund. Math.,34 (1947), pp. 127–143.zbMATHMathSciNetGoogle Scholar
  8. [8]
    S. Mazur, On continuous mappings on Cartesian products,Fund. Math.,39 (1952), pp. 229–238.MathSciNetGoogle Scholar
  9. [9]
    S. Mrówka, Mazur Theorem andm-adic spaces,Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.,18 (1970), pp. 101–107.Google Scholar
  10. [10]
    K. Ross andA. Stone, Products of separable spaces,Amer. Math. Monthly 71, (1964), 398–403.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó 1971

Authors and Affiliations

  • R. H. Marty
    • 1
  1. 1.The Cleveland State UniversityClevelandUSA

Personalised recommendations