A SHR-F n admitting an affine motion

  • R. B. Misra
  • F. M. Meher


Covariant Derivative Integrability Condition Finsler Space Covariant Differentiation Infinitesimal Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Takano, Affine motion in non-RiemannianK *-spaces,Tensor (N.S.),11 (1961), pp. 137–143.MathSciNetGoogle Scholar
  2. [2]
    K. Takano, Affine motion in, non-RiemannianK *-spaces, II,Tensor (N. S.),11 (1961), pp. 161–173.Google Scholar
  3. [3]
    K. Takano-M. Okumura, Affine motion in non-RiemannianK *-spaces, III,Tensor (N. S.),11 (1961), pp. 174–181.zbMATHMathSciNetGoogle Scholar
  4. [4]
    K. Takano, Affine motion in non-RiemannianK *-spaces, IV and V,Tensor (N. S.),11 (1961), pp. 245–253; 270–278.MathSciNetGoogle Scholar
  5. [5]
    R. S. Sinha, Affine motion in recurrent Finsler space,Tensor (N. S.),20 (1969), pp. 261–264.zbMATHMathSciNetGoogle Scholar
  6. [6]
    R. B. Misra, On a recurrent Finsler space, to appear.Google Scholar
  7. [7]
    R. B. Misra—F. M. Meher, On the existence of an affine motion in a HR-F n, to appear.Google Scholar
  8. [8]
    K. Yano,The theory of Lie derivatives and its applications (Amsterdam, 1957).Google Scholar
  9. [9]
    H. Rund,The differential geometry of Finsler spaces (Springer-Verlag, 1959).Google Scholar

Copyright information

© Akadémiai Kiadó 1971

Authors and Affiliations

  • R. B. Misra
    • 1
  • F. M. Meher
    • 2
  1. 1.University of AllahabadAllahabadIndia
  2. 2.Khallikote CollegeBerhampur-gm.India

Personalised recommendations