Geometric & Functional Analysis GAFA

, Volume 1, Issue 2, pp 147–187 | Cite as

Besicovitch type maximal operators and applications to fourier analysis

  • J. Bourga'in
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bol]J. Bourgain, Remarks on Montgomery's conjecture on exponential sums, preprint IHES (1990).Google Scholar
  2. [Bo2]J. Bourgain, On the restriction and multiplier problem in ℝ3, Preprint IHES, M/90/74, to appear in Springer LNM.Google Scholar
  3. [Bo3]J. Bourgain,L p-estimates for oscillatory integrals in several variables, to appear in GAFA.Google Scholar
  4. [Co]A. Cordoba, A note on Bochner-Riesz operators, Duke Math. J. 46, N3 (1979), 565–572.Google Scholar
  5. [CS]L. Carleson, P. Sjölin, Oscillatory integrals and multiplier problem of the disc, Studia Math. 44 (1972), 287–299.Google Scholar
  6. [Fa1]K.J. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Math. 85.Google Scholar
  7. [Fa2]K.J. Falconer, Sections of setz of zero Lebesgue measure, Mathematika, 27, (YEAR), 90–96.Google Scholar
  8. [Fe1]C. Fefferman, A note on spherical summation multipliers, Israel J. Math., (1973), 44–52.Google Scholar
  9. [Fe2]C. Fefferman, The multiplier problem for the ball, Annals Math. 94 (1971), 330–336.Google Scholar
  10. [He]C. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sc. USA (1954).Google Scholar
  11. [Ho]L. Hormander, Oscillatory integrals and multipliers onFL P, Arkiv Math. 11 (1973), 1–11.Google Scholar
  12. [Pi]G. Pisier, Factorization of operators throughL p,∞ andL p,1, and noncommutative generalizations, Math. Ann. 276 (1986), 105–136.Google Scholar
  13. [St]E. Stein, Limits of sequences of operators, Annals Math. 74 (1961), 140–170.Google Scholar
  14. [St2]E.M. Stein, Some problems in harmonic analysis, Proc. Symposia in Pure Math. 35, I, 3–20 (AMS publications).Google Scholar
  15. [St3]E. Stein, beijing Lectures in Harmonic Analysis, Princeton University Press, N. 112.Google Scholar
  16. [T]P. Tomas, A restriction theorem for the Fourier transform, Bull. AMS, 81, N2 (1975), 477–478.Google Scholar

Copyright information

© Birkhäuser Verlag 1991

Authors and Affiliations

  • J. Bourga'in
    • 1
  1. 1.IHESBures sur YvetteFrance

Personalised recommendations