Geometric & Functional Analysis GAFA

, Volume 3, Issue 4, pp 315–341 | Cite as

On the Cauchy problem for the Kadomstev-Petviashvili equation

  • J. Bourgain
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B1]J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, Part I: Schrödinger Equations, Geometric and Functional Analysis 3:2 (1993), 107–156.Google Scholar
  2. [B2]J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, Part II: The KDV Equation, Geometric and Functional Analysis 3:3 (1993), 209–262.Google Scholar
  3. [CLi]H.H. Chen, J.E. Lin, Constrains and conserved quantities of the Kadomtsev-Petviashvili equations, Phys Lett. A 89 (1982), 163.Google Scholar
  4. [CLLi]H.H. Chen, Y.C. Lee, J.E. Lin, On a new hierarcy of symmetries for the Kadomtsev-Petviashvili equation, Physica D 9 (1983), 439.Google Scholar
  5. [F]A.V. Faminskii, The Cauchy problem for the K-P equation, Russian Math Surveys 45:1 (1990), 203–204.Google Scholar
  6. [KT]H. Knörrer, E. Trubowitz, Manuscript in preparation.Google Scholar
  7. [Kr]I. Krichever, The periodic problems for two-dimensional integrable systems, ICM Proc. (1990), 1353–1362.Google Scholar
  8. [S]M. Schwartz, Periodic solutions of Kadomstev-Petviashvili, Advances in Math. 66 (1987), 217–233.Google Scholar
  9. [ScZ]E.I. Schulman, V.E. Zakharov, Degenerate dispersion laws, hamiltonian invariants and kinetic equations, Physica D 1 (1980), 192.Google Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • J. Bourgain
    • 1
  1. 1.IHESBures sur YvetteFrance

Personalised recommendations