Geometric & Functional Analysis GAFA

, Volume 3, Issue 6, pp 564–631 | Cite as

Reimann surfaces with shortest geodesic of maximal length

  • P. Schmutz


I describe Riemann surfaces of constant curvature −1 with the property that the length of its shortest simple closed geodesic is maximal with respect to an open neighborhood in the corresponding Teichmüller space. I give examples of such surfaces. In particular, examples are presented which are modelled upon (Euclidean) polyhedra. This problem is a non-Euclidean analogue of the well known best lattice sphere packing problem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]R.D.M. Accola, On the number of automorphisms of a closed Riemann surface, Trans. A.M.S. 131 (1968), 398–408.Google Scholar
  2. [B1]C. Bavard, Inégalités isosystoliques conformes pour la bouteille de Klein, Geometriae Dedicata 27 (1988), 349–355.Google Scholar
  3. [B2]C. Bavard, La systole des surfaces hyperelliptiques, Prépubl. no 71 ENS Lyon (1992).Google Scholar
  4. [BeMaSi]A.-M. Bergé, J. Martinet, F. Siegrist, Une généralisation de l'algorithme de Voronoï pour les formes quadratiques, Astérisque 209 (1992), 137–158.Google Scholar
  5. [Ber]M. Berger, Lectures on Geodesics in Riemannian Geometry, Tata Institute, Bombay (1965).Google Scholar
  6. [Bers1]L. Bers, Nielsen extensions of Riemann surfaces, Ann. Aca. Scient. Fennicae, Series A.I.Mathematica Vol. 2 (1976), 29–34.Google Scholar
  7. [Bers2]L. Bers, Spaces of degenerating Riemann surfaces, in “Discontinuous Groups and Riemann Surfaces’, Princeton Univ. Press, Princeton (1974), 43–55.Google Scholar
  8. [Br]H.R. Brahana, Regular maps and their groups, Amer. J. of Math. 48 (1927), 268–284.Google Scholar
  9. [Bro]R. Brooks, Some relations between spectral geometry and number theory, Preprint.Google Scholar
  10. [Bu]P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Birkhäuser Basel-Boston-New York 1992.Google Scholar
  11. [BuS]P. Buser, P. Sarnak, On the period matrix of a Riemann surface of large genus, Preprint 1992.Google Scholar
  12. [C]E. Calabi, Isosystolic Problems, Math. Forschungsinstitut Oberwolfach, Tagungsbericht 22 (1991).Google Scholar
  13. [CoSl]J. Conway, N. Sloane, Sphere packings, lattices and groups, Springer Berlin Heidelberg New York Tokyo 1988.Google Scholar
  14. [CoxMo]H.S.M. Coxeter, W.O.J. Moser, Generators and Relations for Discrete Groups, Springer Berlin-New York 1965.Google Scholar
  15. [F]L. Fejes Tóth, Regular Figures, Pergamon Press Oxford (1964).Google Scholar
  16. [G]M. Gromov, Filling Riemannian manifolds, J. Differential Geometry 18 (1983), 1–147.Google Scholar
  17. [J1]F.W. Jenny, Ueber das Spektrum des Laplace-Operators auf einer Schar kompakter Riemannscher Flächen, Dissertation. Basel 1981.Google Scholar
  18. [J2]F.W. Jenny, Ueber den ersten Eigenwert des Laplace-Operators auf ausgewählten Beispielen kompakter Riemannscher Flächen, Comment. Math. Helvetici 59 (1984), 193–203.Google Scholar
  19. [K1]S. Kerckhoff, The Nielsen realization problem, Annals of Math. 117 (1983), 235–265.Google Scholar
  20. [K2]S. Kerckhoff, Earthquakes are analytic, Comment. Math. Helvetici 60 (1985), 17–30.Google Scholar
  21. [K3]S. Kerckhoff, Lines of minima in Teichmüller space, Duke Math. J. 65 (1992), 187–213.Google Scholar
  22. [KiKu]H. Kimura, A. Kuribayashi, Automorphism groups of compact Riemann surfaces of genus five, J. of Algebra 134 (1990), 80–103.Google Scholar
  23. [KuKur]A. Kuribayashi, I. Kuribayashi, Automorphism groups of compact Riemann surfaces of genera three and four, J. of Pure and Applied Algebra 65 (1990), 277–292.Google Scholar
  24. [Kur]I. Kuribayashi, On an algebraization of the Riemann-Hurwitz relation, Kodai Math. J. 7 (1984), 222–237.Google Scholar
  25. [M]C. Maclachlan, A bound for the number of automorphisms of a Compact Riemann Surface, J. London Math. Soc. 44 (1969), 265–272.Google Scholar
  26. [Mu]D. Mumford, A remark on Mahler's compactness theorem, Proc. AMS 28 (1971), 289–294.Google Scholar
  27. [N]M. Näätänen, Regularn-Gons and Fuchsian Groups, Ann. Aca. Scient. Fennicae, Series A.I.Mathematica 7 (1982), 291–300.Google Scholar
  28. [Ni]J. Nielsen, Collected Papers, vol. 2, Birkhäuser, Basel-Boston-New York 1986.Google Scholar
  29. [Sc1]P. Schmutz, Die Parametrisierung des Teichmüllerraumes durch geodätische Längenfunktionen, Comment. Math. Helvetici 68 (1993), 278–288.Google Scholar
  30. [Sc2]P. Schmutz, Congruence subgroups and maximal Riemann surfaces, to appear in The Journal of Geometric Analysis.Google Scholar
  31. [T]W.P. Thurston, Earthquakes in two-dimensional hyperbolic geometry, in “Low-dimensional Topology and Kleinian Groups, Warwick and Durham, 1984” (D.B.A. Epstein, ed.), London Math. Soc. Lecture Note Ser. 112, Cambridge Univ. Press, Cambridge, 1986, 91–112.Google Scholar
  32. [V]G. Voronoï, Sur quelques propriétés des formes quadratiques positives parfaites, J. reine angew. Math. 133 (1908), 97–178.Google Scholar
  33. [W]S. Wolpert, Geodesic Length Functions and the Nielsen Problem, J. Differential Geometry 25 (1987), 275–296.Google Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • P. Schmutz
    • 1
  1. 1.Mathematisches InstitutETH-ZentrumZürichSwitzerland

Personalised recommendations