Advertisement

On the sum of distances betweenn points on a sphere. II

  • R. Alexander
Article

Keywords

Borel Measure Special Plane Integral Geometry Uniform Measure Positive Borel Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Alexander, On the sum of distances betweenn points on a sphere,Acta Math. Acad. Sci. Hungar.,23 (1972), 443–448.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    R. Alexander, Generalized sums of distances,Pacific Jour. Math.,56 (1975), 297–304.zbMATHCrossRefGoogle Scholar
  3. [3]
    R. Alexander andK. B. Stolarsky, Extremal problems of distance geometry related to energy integrals.Trans. Amer. Math. Soc.,193 (1973), 1–31.MathSciNetCrossRefGoogle Scholar
  4. [4]
    G. Björck, Distributions of positive mass, which maximize a certain generalized energy integral,Ark. Math.,3 (1955), 255–269.CrossRefGoogle Scholar
  5. [5]
    L. Fejes Tóth, On the sum of distances determined by a pointset,Acta Math. Acad. Sci. Hungar.,7 (1956), 397–401.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    K. B. Stolarsky, Sums of distances betweenn points on a sphere. II,Proc. Amer. Math. Soc.,41 (1973), 575–582.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    K. B. Stolarsky, Spherical distributions ofn points with maximal distance sums are well spaced,Proc. Amer. Math. Soc.,48 (1975), 203–206.MathSciNetzbMATHGoogle Scholar

Copyright information

© Akadémiai Kiadó 1977

Authors and Affiliations

  • R. Alexander
    • 1
  1. 1.Department of mathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations