Geometric & Functional Analysis GAFA

, Volume 4, Issue 2, pp 213–235 | Cite as

C1 changes of variable: Beurling-Helson type theorem and Hörmander conjecture on Fourier multipliers

  • V. Lebedev
  • A. Olevskiî
Article

Abstract

We prove that if aC1 smooth change of variable ϕ:ℝ→ℝ generates a bounded composition operatorff°ϕ in the spaceAp(ℝ)=L p ,p≠2, then φ is linear (affine).

We also prove that for a nonlinearC1 mapping φ, the norms of exponentialseiλϕ as Fourier multipliers inL p (ℝ) tend to infinity (λ∈ℝ,|λ|→∞). In both results the condition φ∈C1 is sharp, it cannot be replaced by the Lipschitz condition.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]L. Alpar, Sur une class particulière de séries de Fourier à certaines puissances absolument convergentes, Studia Sci. Math. Hungar. 3 (1968), 279–286.Google Scholar
  2. [BH]A. Beurling, H. Helson, Fourier transforms with bounded powers, Math. Scand. 1 (1953), 120–126.Google Scholar
  3. [Bj]J.-E. Björk, On Fourier transform of smooth measures carried by realanalytic submanifolds of ℝn. Preprint, 1973, Stockholm University.Google Scholar
  4. [Bo]R.P. Boas, Entire Functions, Acad. Press, New York, 1954.Google Scholar
  5. [D]V.N. Demenko, Onp-Helson sets in ℝn, Analysis Math. 15 (1989), 17–35.Google Scholar
  6. [E]R.E. Edwards, Fourier Series. A modern Introduction, vol. 2., Springer, 1982.Google Scholar
  7. [G]C.C. Graham, Mappings that preserve Sidon sets in ℝ, Arkiv für Matematik 19 (1981), 217–221.Google Scholar
  8. [Hö]L. Hörmander, Estimates for translation invariant operators inL p spaces, Acta Math. 104 (1960), 93–140.Google Scholar
  9. [J]M. Jodeit, Jr., A note on Fourier multipliers, Proc. Amer. Math. Soc. 27 (1971), 423–424.Google Scholar
  10. [K1]J.-P. Kahane, Séries de Fourier Absolument Convergents, Springer-Verlag, New York, 1970.Google Scholar
  11. [K2]J.-P. Kahane, Quatre lecons sur les homéomorphismes du cercle et les séries de Fourier, Proc. Sem. Torino and Milano, vol. 2 (1983), Roma 955–990.Google Scholar
  12. [Ka]Y. Katznelson, An introduction to Harmonic Analysis, (Second Edition), New York, Dover, 1976.Google Scholar
  13. [Kau]R. Kaufman, Topics on Kronecker sets, Ann. Inst. Fourier, Grenoble, 23 (1973), 65–74.Google Scholar
  14. [L]Z.L. Leibenzon, On the ring of functions with absolutely convergent Fourier series, Usp. Mat. Nauk 9 (1954), 157–162 (in Russian).Google Scholar
  15. [dL]K. de Leew, OnL p multipliers, Ann. Math. 81 (1965), 364–379.Google Scholar
  16. [O1]A. Olevskiî, Homeomorphisms of the circle, Modifications of functions and Fourier Series, Proc. Int. Cong. Math., Berkeley, 1986, vol. 2, Amer. Math. Soc., Providence, R.I., 1987, 976–938.Google Scholar
  17. [O2]A. Olevskiî, Change of variable in Fourier Analysis, Real Anal. Exch. 17 (1991–1992), 32.Google Scholar
  18. [S]L. Schwarz, Sur les multiplicateurs deF L p, Kungl. fisiogr. sälisk i Lund förth, 22 (1952), 124–128.Google Scholar
  19. [Se]W.M. Self, Some consequences of the Beurling-Helson theorem, Rocky Mountain J. Math. 6 (1976), 177–180.Google Scholar
  20. [Z]A. Zygmund, Trigonometric Series vol. 1∶2, Cambridge Univ. Press, 1959.Google Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • V. Lebedev
    • 1
  • A. Olevskiî
    • 1
  1. 1.School of Mathematical Sciences Sackler Faculty of Exact SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations