Geometric & Functional Analysis GAFA

, Volume 4, Issue 2, pp 136–212 | Cite as

Milnor and ray-singer metrics on the equivariant determinant of a flat vector bundle

  • J. -M. Bismut
  • W. Zhang
Article

Abstract

In this paper, we extend our previous results relating Milnor and Ray-Singer metrics on the determinant of the cohomology of a flat complex vector bundle to the equivariant case. Thus, we extend Lott and Rothenberg and Lück's theorems relating equivariant combinatorial and analytic torsions to flat vector bundles which are not necessarily unitarily flat.

Keywords

Vector Bundle Complex Vector Complex Vector Bundle Analytic Torsion Flat Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Dans cet article, on étend nos résultats antérieurs reliant les métriques de Milnor et de Ray-Singer sur le déterminant de la cohomologie d'un fibré complexe plat au cas équivariant. On étend ainsi des résultats de Lott et Rothenberg et Lück, qui relient les torisons combinatoires et analytiques dans le cas équivariant, à des fibrés non nécessairement unitairement plats.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ARob]R. Abraham, J. Robbin, Transversal Mappings and Flows, Benjamin, New-York, 1967.Google Scholar
  2. [BeGeV]N. Berline, E. Getzler, M. Vergne, Heat Kernels and the Dirac Operator, Grundl. der Math. Wiss. Band 298, Springer, Berlin-Heidelberg-New-York, 1992.Google Scholar
  3. [BerB]A. Berthomieu, J.-J. Bismut, Quillen metrics and higher analytic torsion forms, Preprint Orsay 92-67. To appear in J. Reine Ang. Math.Google Scholar
  4. [B1]J.-M. Bismut, From Quillen metrics to Reidemeister metrics: some aspects of the Ray-Singer analytic torsion. In “Topological methods in modern mathematics” (L.R. Goldberg, A.V. Phillips, eds.), 273–324, Publish or Perish, Houston 1993.Google Scholar
  5. [B2]J.-M. Bismut, The Atiyah-Singer index theorems: A probabilistic approach. II. The Lefschetz fixed point formulas. J. Funct. Anal. 57, 329–348 (1984).Google Scholar
  6. [BGS1]J.-M. Bismut, H. Gillet, C. Soulé, Analytic torsion and homomorphic determinant bundles, I, Comm. Math. Phys. 115, 49–78 (1988).Google Scholar
  7. [BGS2]J.-M. Bismut, H. Gillet, C. Soulé, Complex immersions and Arakelov geometry, in “The Grothendieck Festschrift” (P. Cartier, et al. eds.), I, 249–331, Progress in Math. 86, Boston: Birkhäuser 1990.Google Scholar
  8. [BL]J.-M. Bismut, G. Lebeau, Complex immersions and Quillen metrics, Publ. Math. IHES 74, 1–298 (1991).Google Scholar
  9. [BLo]J.-M. Bismut, J. Lott, Flat vector bundles and higher analytic torsion forms, Preprint Orsay 93-28. To appear in J.A.M.S.Google Scholar
  10. [BZ]J.-M. Bismut, W. Zhang, An extension of a theorem by Cheeger and Müller, Astérisque, 205, SMF, Paris 1992.Google Scholar
  11. [C]J. Cheeger, Analytic torsion and the heat equation, Ann. of Math. 109, 259–322 (1979).Google Scholar
  12. [F]W. Franz, Uber die Torsion einer überdeckung, J. Reine Angew. Math. 173, 245–254 (1935).Google Scholar
  13. [G]E. Getzler, A short proof of the Atiyah-Singer index theorem, Topology 25, 111–117 (1986).Google Scholar
  14. [GlJ]J. Glimm, A. Jaffe, Quantum Physics, Springer, Berlin-Heidelberg-New-York, 1987.Google Scholar
  15. [HSj1]B. Helffer, J. Sjöstrand, Multiple wells in the semi-classical limit I, Comm. P.D.E. 9, 337–408 (1984).Google Scholar
  16. [HSj2]B. Helffer, J. Sjöstrand Puits multiples en limite semi-classique II, Annales I.H.P. (Physique théorique) 42, 127–212 (1985).Google Scholar
  17. [HSj3]B. Helffer, J. Sjöstrand, Multiple wells in the semi-classical limit III, Math. Nachr. 124, 263–313 (1985).Google Scholar
  18. [HSj4]B. Helffer, J. Sjöstrand, Puits multiples en mécanique semi-classique, IV, Etude du complexe de Witten, Comm. P.D.E. 10, 245–240 (1985).Google Scholar
  19. [I]S. Illman, Smooth equivariant triangulations ofG-manifolds forG a finite group, Math. Ann. 233 199–220 (1978).Google Scholar
  20. [KMu]F.F. Knudsen, D. Mumford, The projectivity of the moduli space of stable curves, I: Preliminaries on “det” and “div”, Math. Scand. 39, 19–55 (1976).Google Scholar
  21. [LRo]J. Lott, M. Rothenberg, Analytic torsion for group actions, J. Diff. Geom. 34, 431–481 (1991).Google Scholar
  22. [Lü]W. Lück, Analytic and topological torsion for manifolds with boundary and symmetry, J. Diff. Geom. 37, 263–322 (1993).Google Scholar
  23. [MQ]V. Mathai, D. Quillen, Superconnections, Thom classes, and equivariant differential forms, Topology 25, 85–110 (1986).Google Scholar
  24. [McS]H. McKean, I.M. Singer, Curvature and the eigenforms of the Laplacian, J. Diff. Geom. 1, 43–69 (1967).Google Scholar
  25. [Mi1]J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72, 358–426 (1966).Google Scholar
  26. [Mi2]J. Milnor, Lectures on theh-Cobordism Theorem, Princeton University Press, Princeton 1965.Google Scholar
  27. [Mü1]W. Müller., Analytic torsion andR-torsion of Riemannian manifolds, Adv. in Math. 28, 233–305 (1978).Google Scholar
  28. [Mü2]W. Müller, Analytic torsion andR-torsion for unimodular, representations, Preprint MPI 91-50 (1991).Google Scholar
  29. [NO]A. Nikiforov, V. Ouvarov, Eléments de la théorie des fonctions spéciales, Mir, Moscow, 1976.Google Scholar
  30. [Q]D. Quillen, Determinants of Cauchy-Riemann operators over a Riemann surface, Funct. Anal. Appl. 14, 31–34 (1985).Google Scholar
  31. [R]D.B. Ray, Reidemeister torsion and the Laplacian on lens spaces, Adv. in Math. 4, 109–126 (1970).Google Scholar
  32. [RS]D.B. Ray, I.M. Singer,R-torsion and the Laplacian on Riemannian manifolds, Adv. in Math. 7 (1971), 145–210.Google Scholar
  33. [Re]K. Reidemeister, Homotopieringe und Linsenraüm, Hamburger Abhandl, 11, 102–109 (1935).Google Scholar
  34. [Rh]G. de Rham, Complexes à automorphismes et homotopies différentiables, Ann. Inst. Fourier 2, 51–67 (1950).Google Scholar
  35. [Ro]M. Rothenberg, Torsion Invariants and Finite Transformation Groups, In Algebraic and Geometric Topology” Part. I., Proc. Symp. Pure Math 32, 267–311, AMS, Providence (1978).Google Scholar
  36. [Sm1]S. Smale, On gradient dynamical systems, Ann. of Math. 74, 199–206 (1961).Google Scholar
  37. [Sm2]S. Smale, Differentiable dynamical systems, Bull. Am. Math. Soc. 73, 747–817 (1967).Google Scholar
  38. [T]R. Thom, Sur une partition en cellules associée à une fonction sur une variété, C.R. Acad. Sci. Paris, Série A, 228, 661–692 (1949).Google Scholar
  39. [W]A. G. Wasserman, Equivariant differential topology, Topology 8, 127–150 (1969).Google Scholar
  40. [We]A. Weil, Elliptic Functions According to Einstein and Kronecker, Erg. Math. Grenz. 88, Springer, Berlin-Heidelberg-New-York, 1976.Google Scholar
  41. [Wi]E. Witten, Supersymmetry and Morse theory, J. Diff. Geom. 17, 661–692 (1982).Google Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • J. -M. Bismut
    • 1
  • W. Zhang
    • 1
    • 2
  1. 1.Département de MathématiqueURA 1169 du CNRS Université Paris-SudORSAY CedexFrance
  2. 2.Nankai Institute of MathematicsTianjinRépublique Populaire de Chine

Personalised recommendations