Asymmetric graphs

  • P. Erdős
  • A. Rényi


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    O. Perron, Bemerkung über die Verteilung der quadratischen Reste,Mathematische Zeitschrift,56 (1952), pp. 122–130.Google Scholar
  2. [2]
    J. B. Kelly, A characteristic property of quadratic residues,Proceedings of the American Mathematical Society,5 (1954), pp. 38–46.Google Scholar
  3. [3]
    A. Rényi, On the measure of equidistribution of point sets,Acta Sci. Math. Szeged,13 (1949), pp. 77–92.Google Scholar
  4. [4]
    A. W. Goodman, On sets of acquaintances and strangers at any party,American Math. Monthly,66 (1959), pp. 778–783.Google Scholar
  5. [5]
    I. L. Sauvé, On chromatic graphs,American Math. Monthly,68 (1961), pp. 107–111.Google Scholar
  6. [6]
    P. Erdős, On the number of triangles contained in certain graphs,Bulletin of the Research Council of Israel, Section F. (in print).Google Scholar
  7. [7]
    P. Erdős andA. Rényi, On the evolution of random graphs,Publications of the Math. Inst. Hung. Acad. Sci.,5 (1960), pp. 17–61.Google Scholar
  8. [8]
    A. Cayley, A theorem on trees,Quarterly Journal of Pure and Applied Math.,23 (1889), pp. 376–378.Google Scholar
  9. [9]
    A. Rényi, Some remarks on the theory of trees,Publ. Math. Inst. Hung. Acad. Sci.,4 (1959), pp. 73–85.Google Scholar
  10. [10]
    A. Rényi, On connected graphs,Publ. Math. Inst. Hung. Acad. Sci.,4 (1959), pp. 385–388.Google Scholar

Copyright information

© Akadémiai Kiadó 1963

Authors and Affiliations

  • P. Erdős
    • 1
  • A. Rényi
    • 1
  1. 1.Mathematical InstituteEötvös Loránd UniversityBudapest

Personalised recommendations