Geometric & Functional Analysis GAFA

, Volume 3, Issue 3, pp 263–278

Combings of semidirect products and 3-manifold groups

  • M. R. Bridson
Article

Abstract

IfG is a finitely generated group that is abelian or word-hyperbolic andH is an asynchronously combable group then every split extension ofG byH is asynchronously combable. The fundamental group of any compact 3-manifold that satisfies the geometrization conjecture is asynchronously combable. Every split extension of a word-hyperbolic group by an asynchronously automatic group is asynchronously automatic.

1991 Mathematics Subject Classification

20F32 20F34 57M50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BGSS]G. Baumslag, S. Gersten, M. Shapiro, H. Short, Automatic groups and amalgams, Jour. of Pure and Appl. Algebra 76 (1991), 229–316.Google Scholar
  2. [BF]M. Bestvina, M. Feighn, A combination theorem for hyperbolic groups, Jour. Diff. Geom., to appear.Google Scholar
  3. [B]M. R. Bridson, On the geometry of normal forms in discrete groups, Proc. LMS, to appear.Google Scholar
  4. [BG]M. R. Bridson, S. M. Gersten, The optimal isoperimetric inequality for ℤn ⋊ ℤ preprint, Princeton University, July 1992.Google Scholar
  5. [CEHLPT]J. W. Cannon, D. B. A. Epstein, D. F. Holt, S. V. F. Levy, M. S. Paterson, W. P. Thurston, Word Processing in Groups, Jones and Bartlett, Boston MA., 1992.Google Scholar
  6. [G1]S. M. Gersten, Isodiametric and isoperimetric inequalities in group extensions, preprint, University of Utah, April 1991.Google Scholar
  7. [G2]S. M. Gersten Finiteness properties for asynchronously automatic groups, reprint, University of Utah, June 1992.Google Scholar
  8. [GH]E. Ghys, P. de la Harpe (Eds., Sur les Groupes Hyperboliques d'après Mikhael Gromov, Progress in Mathematics 83, Birkhäuser, Boston MA 1990.Google Scholar
  9. [Gr]M. Gromov, Hyperbolic groups, in “Essays in Group Theory” (S.M. Gersten, ed.), 75–263, MSRI Publ., 8, Springer Verlag, New York, 1987.Google Scholar
  10. [HU]J. E. Hopcroft J. D. Ullman Introduction to Auotomata Theory, Languages and Computation, Addison Wesley, Reading MA., 1979.Google Scholar
  11. [LS]R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin, 1977.Google Scholar
  12. [MT]M. L. Mihalik, T. S. Tschantz, Tame combings and the QSF condition for groups, preprint, Vanderbilt University, March 1992.Google Scholar
  13. [S]G. P. Scott, The geometry of 3-manifolds, Bull. LMS 15 (1983), 401–487.Google Scholar
  14. [Sh]M. Shapiro, Automatic structure and graphs of groups, in “Topology '90”, Proceedings of the research semester in low-dimensional topology at Ohio State, de Gruyper Verlag, to appear.Google Scholar
  15. [T1]W. P. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. AMS 6 (1982), 357–381.Google Scholar
  16. [T2]W. P. Thurston, The Geometry and Topology of 3-manifolds, preprint, Princeton University, 1991.Google Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • M. R. Bridson
    • 1
  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations