Geometric & Functional Analysis GAFA

, Volume 5, Issue 2, pp 402–433

The differential of a quasi-conformal mapping of a Carnot-Caratheodory space

  • G. A. Margulis
  • G. D. Mostow
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Go]R. Goodman, Nilpotent Lie Groups: Structure and Applications to Analysis, Lecture Notes in Math, Springer, Berlin, 562, 1970.Google Scholar
  2. [Gr]M. Gromov, Structures métriques pour les variétés Riemannienes, CEDIC, Paris, 1981.Google Scholar
  3. [KR]A. Koranyi, M. Reimann, Foundations for the theory of quasi-conformal mappings of the Heisenberg group, Adv. in Math. III:1 (1995), 1–87.Google Scholar
  4. [M]G. Metivier, Fonction spectrale et valeurs propres d'une classe d'operateurs non elliptiques, Comm. Partial Differential Equations 1 (1976), 479–519.Google Scholar
  5. [Mi]J. Mitchell, On Carnot-Carathéodory metrics, J. Differential Geometry 21 (1985), 35–45.Google Scholar
  6. [Mo1]G.D. Mostow, Quasi-conformal mappings inn-spaces and the rigidity of hyperbolic space forms, Publ. Math. IHES 34 (1968), 53–104.Google Scholar
  7. [Mo2]G.D. Mostow, Strong Rigidity of Locally Symmetric Spaces, Annals of Math Studies, Princeton Univ. Press, Princeton, NJ, 1973.Google Scholar
  8. [Mo3]G.D. Mostow, A remark on quasi-conformal mappings on Carnot groups, Michigan Math. J. 41 (1994), 31–37.Google Scholar
  9. [P]P. Pansu, Métriques de Carnot-Carathéodory, et quasi-isométries des espaces symmétriques de rang un, Ann. of Math. 2:129 (1989), 1–60.Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • G. A. Margulis
    • 1
  • G. D. Mostow
    • 1
  1. 1.Dept. of Math.Yale UniversityNew HavenUSA

Personalised recommendations