Geometric & Functional Analysis GAFA

, Volume 5, Issue 2, pp 270–328 | Cite as

Properties of pseudo-holomorphic curves in symplectisations II: Embedding controls and algebraic invariants

  • H. Hofer
  • K. Wysocki
  • E. Zehnder


Algebraic Invariant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AH]C. Abbas, H. Hofer, Holomorphic curves and global questions in contact geometry, to appear in Lectures in Mathematics, ETH Zürich, Birkhäuser.Google Scholar
  2. [Au]Audin et al., Holomorphic Curves in Symplectic Geometry, Progress in Mathematics 117, Birkhäuser, 1994.Google Scholar
  3. [B]D. Bennequin, Entrelacements et équations de Pfaff, Astérisque 107–108 (1983), 83–161.Google Scholar
  4. [CFH]K. Cieliebak, A. Floer, H. Hofer, Sympilectic homology II: general symplectic manifolds, to appear in Math. Zeit.Google Scholar
  5. [CoZ]C. Conley, E. Zehnder, An index theory for periodic solutions of a Hamiltonian system, Geometric Dynamics, Springer Lecture Notes in Mathematics 1007 (1983), 132–145.Google Scholar
  6. [E1]Y. Eliashberg, Contact 3-manifolds, twenty year since J. Martinet's work, Ann. Inst. Fourier 42 (1992), 165–192.Google Scholar
  7. [E2]Y. Eliashberg, Filling by holomorphic discs and its applications, London Math. Society Lecture Notes, series 151 (1991), 45–67.Google Scholar
  8. [E3]Y. Eliashberg, Legendrian and transversal knots in tight contact manifolds, In “Topological Methods in Modern Mathematics”, Publish or Perish, 1993.Google Scholar
  9. [FHS]A. Floer, H. Hofer, D. Salamon, Transversality results in the elliptic Morse theory for the action functional, to appear in Duke.Google Scholar
  10. [G]E. Giroux, Convexité en topologie de contact, Comm. Math. Helvetici 66 (1991), 637–677.Google Scholar
  11. [Gr]M. Gromov, Pseudo Holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–347.Google Scholar
  12. [H]H. Hofer, Pseudo Holomorphic curves in symplectisations with application to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993), 515–563.Google Scholar
  13. [HWyZ1]H. Hofer, K. Wysocki, E. Zehnder, A characterization of the tight three-sphere, preprint.Google Scholar
  14. [HWyZ2]H. Hofer, K. Wysocki, E. Zehnder, The dynamics on a strictly convex energy surface inR 4. preprint.Google Scholar
  15. [HWyZ3]H. Hofer, K. Wysocki, E. Zehnder, Properties of pseudo holomorphic curves in symplectisations I: Asymptotics, preprint.Google Scholar
  16. [HWyZ4]H. Hofer, K. Wysocki, E. Zehnder, Properties of pseudo holomorphic curves in symplectisations III: Fredholm theory, preprint.Google Scholar
  17. [HZ]H. Hofer, E. Zehnder, Hamiltonian Dynamics and Symplectic Invariants, Birkhäuser, 1994.Google Scholar
  18. [K]T. Kato, Perturbation Theory for Linear Operators, Springer, grundlehren edition, 1976.Google Scholar
  19. [M]D. McDuff, The local behavior ofJ-holomorphic curves in almost complex 4-manifolds, J. Diff. Geom. 34 (1991), 143–164.Google Scholar
  20. [MS]D. McDuff, D. Salamon, J-holomorphic Curves and Quantum Cohomology, AMS, 1994.Google Scholar
  21. [MiW]M. Micallef, B. White, The structure of branch points in minimal surfaces and in pseudo holomorphic curves, preprint 1994.Google Scholar
  22. [PdM]J. Palis, W. de Melo, Geometric Theory of Dynamical Systems, Springer, Berlin, 1982.Google Scholar
  23. [RS]J. W. Robbin, D. Salamon, The spectral flow and the Maslov index, Journal of the LMS, to appear.Google Scholar
  24. [Ro]D. Rolfson, Knots, Publish or Perish, 1976.Google Scholar
  25. [SZ]D. Salamon, E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992), 1303–1360.Google Scholar
  26. [Y]R. Ye, Filling by holomorphic discs in symplectic 4-manifolds, preprint.Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • H. Hofer
    • 1
  • K. Wysocki
    • 1
  • E. Zehnder
    • 1
  1. 1.Matematik ETH ZentrumZurichSwitzerland

Personalised recommendations