Geometric & Functional Analysis GAFA

, Volume 1, Issue 1, pp 80–146 | Cite as

The spectrum of fermat curves

  • R. Phillips
  • P. Sarnak
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BR]D. Blasius and D. Ramakrishnan, Maass forms and Galois representations, preprint, 1987.Google Scholar
  2. [BP]E. Bombieri andJ. Pila, The number of points on curves and ovals, Duke Math. Jnl. 59(2) (1989), 337–358.Google Scholar
  3. [C]Y. Colin de Verdiere, Psuedo Laplacians I and II, Annal Inst. Fourier 32 (1983), 275–286 and 33 (1983), 87–113.Google Scholar
  4. [D]H. Davenport, Multiplicative Number Theory, Springer Verlag, 1980.Google Scholar
  5. [DW]De-George andN. Wallach, Limit formulas for multiplicities inL 2 (Γ/G), Ann. of Math 107 (1978), 133–150.Google Scholar
  6. [E]C. Epstein, Asymptotics for closed geodiscs in a homology class, the finite volume case, Duke Math. Jnl. 55 (1987) 717–757.Google Scholar
  7. [FK]R. Fricke and F. Klein, Vorlesungen über die Theorie der Elliptischen Modulfunkionen, Vol. 2, Stuttgart, (1966).Google Scholar
  8. [GL]A. Gelfond andY. Linnik, Elementary Methods in Analytic Number Theory, Rand McNally, Chicago, 1965.Google Scholar
  9. [GR]I. Gradshteyn and I. Ryzhik, Table of Integrals, Series and Products, Academic Press, 1980.Google Scholar
  10. [He]D. Hejhal, The Selberg Trace Formula forPSL(2,ℝ), Vol. 2, Springer Lecture Notes 1001, 1983.Google Scholar
  11. [Hu]M. Huxley, Introduction to Kloostermania, in Banach Center Publ., ed. H. Iwaniec, 17, Warsaw, 1985.Google Scholar
  12. [I]H. Iwaniec, Small eigenvalues forL 20(p)\H, χp), to appear.Google Scholar
  13. [J]V. Jarnik, Über die Gitterpunkte auf konvexen Curven, Math Z. 24 (1926), 500–518.Google Scholar
  14. [KS]A. Kustada andT. Sunada, Homology and closed geodesics in a compact Riemann surface, American Jnl. Math. 110 (1988), 145–155.Google Scholar
  15. [L]S. Lang, Introduction to Algebraic and Abelian Functions, Springer-Verlag, 1982.Google Scholar
  16. [LP1]P. Lax and R. Phillips, Scattering theory of automorphic forms, Annals of Math Studies 87 (1976).Google Scholar
  17. [LP2]P. Lax andR. Phillips, The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Func. Anal. 46 (1982), 280–350.Google Scholar
  18. [M]H. Maass, Über eine neue Art von nichtanalytischen automorphismen Funktionen, Math. Ann. 121 (1949), 141–183.Google Scholar
  19. [MR]V.K. Murty andD. Ramakrishnan, The Manin-Drinfeld Theorem and Ramanujan Sums, Proc. Indian Acad. Sci. 97 (1987), 251–262.Google Scholar
  20. [PS1]R. Phillips andP. Sarnak, On cusp forms for cofinite subgroups ofPSL(2,ℝ), Invent. Math. 80 (1985), 339–364.Google Scholar
  21. [PS2]R. Phillips and P. Sarnak, The Laplacian for domains in hyperbolic space and limit sets of Kleinian groups, Acta Math. 155 (1985).Google Scholar
  22. [PS3]R. Phillips andP. Sarnak, Geodesics in homology classes, Duke Math. Jnl. 55 (1987), 287–297.Google Scholar
  23. [PS4]R. Phillips and P. Sarnak, to appear.Google Scholar
  24. [Rl]B. Randol, Small eigenvalues of the Laplace operator on compact Riemann surfaces, Bull. A.M.S. 80 (1974), 996–1000.Google Scholar
  25. [Rn]R. Rankin, Modular Forms and Functions, Cambridge Univ. Press, 1977.Google Scholar
  26. [RS]M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. IV, Academic Press, 1978.Google Scholar
  27. [Ro]D. Rohrlick, Points at infinity on Fermat curves, Inven. Math. 39 (1977), 95–127.Google Scholar
  28. [Sa1]P. Sarnak, On cusp forms, Contemp. Math. 53 (1986), 393–407.Google Scholar
  29. [Sa2]P. Sarnak, On cusp Forms II, to appear in Piatetsky-Shapiro 60th birthday volume, 1990.Google Scholar
  30. [Sa3]P. Sarnak, Betti numbers of congruence groups, preprint A.N.U. Center for Math Analysis, 1990.Google Scholar
  31. [Sa4]P. Sarnak, Prime geodesic theorems, Thesis 1980, Stanford.Google Scholar
  32. [Se1]A. Selberg, Harmonic Analysis, Collected works, Vol I, 1989.Google Scholar
  33. [Se2]A. Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Symp. Pure Math. 8 (1965), 1–15.Google Scholar
  34. [W]K. Wohlfahrt, An extension of F. Klein's level concept, IJM 8, 529–535.Google Scholar

Copyright information

© Birkhäuser Verlag 1991

Authors and Affiliations

  • R. Phillips
    • 1
  • P. Sarnak
    • 1
  1. 1.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations