Advertisement

Metrika

, Volume 41, Issue 1, pp 43–54 | Cite as

Bounds for median and 50 percetage point of binomial and negative binomial distribution

  • Rainer Göb
Article

Abstract

Inequalities for comparing the binomial distribution function/operating characteristic function with value 0.5 have been established long ago. It is a trivial task to infer from these inequalities bounds for the 50 percentage point of the binomial operating characteristic function. However, it is also possible to use these inequalities to establish good bounds for the median of the binomial distribution function. By a relation of binomial distribution function/operating characteristic function and negative binomial distribution function/operating characteristic function we can get bounds for the respective parameters of negative binomial distribution, too.

Key Words

Binomial Negative Binomial Distribution Function Operating Characteristic Function 50 Percentage Point Median 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Göb R (1991) α-optimale Stichprobenpläne zur Fehlerprüfung von Warenpartien. Thesis, Universität Würzburg 1991Google Scholar
  2. Göb R (1992) Type A Operating Characteristic Functions of Defects Sampling Plans. Metrika 39:139–153Google Scholar
  3. Johnson NL, Kotz S (1969) Discrete Distributions. Houghton Mifflin Company, BostonGoogle Scholar
  4. Patel J, Kapadia CH, Owen DB (1976) Handbook of Statistical Distributions, Marcel Dekker, New York/BaselGoogle Scholar
  5. Uhlmann W (1966) Vergleich der hypergeometrischen mit der Binomial-Verteilung. Metrika 10: 145–158Google Scholar
  6. Uhlmann W (1970) Kostenoptimale Prüfpläne, Tabellen, Praxis and Theorie eines Verfahrens der statistichen Qualitätskontrolle. Physica Verlag, Würzburg/WienGoogle Scholar
  7. Uhlmann W (1982) Statistische Qualitätskontrolle. 2nd ed. Teubner Verlag, StuttgartGoogle Scholar
  8. van de Ven R, Weber NC (1993) Bounds for the Median of the Negative Binomial Distribution. Metrika 40:185–189Google Scholar

Copyright information

© Physica-Verlag 1994

Authors and Affiliations

  • Rainer Göb
    • 1
  1. 1.Institut für Angewandte Mathematik und Statistik der Universität WürzburgWürzburgGermany

Personalised recommendations