On some problems of a statistical group-theory. IV

  • P. Erdős
  • P. Turán


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Erdős andP. Turán, On some problems of a statistical group theory, I,Zeitschr. für Wahrscheinlichkeitstheorie und verw. Gebiete,4 (1965), pp. 175–186.Google Scholar
  2. [2]
    P. Erdős andP. Turán, On some problems of a statistical group theory. III,Acta Math. Acad. Sci. Hung.,18 (1967), pp. 309–320.Google Scholar
  3. [3]
    E. Landau,Handbuch der Lehre von der Verteilung der Primzahlen,I. (1909), p. 222.Google Scholar
  4. [4]
    E. Erdős andJ. Lehner, The distribution of the number of summands in the partitions of a positive integer,Duke Math. Journ.,8 (2) (1941), pp. 335–345.Google Scholar
  5. [5]
    G. H. Hardy andS. Ramanujan, Asymptotic formulae for the distribution of integers of various types,Proc. of Lond. Math. Soc. (2)16 (1917), pp. 117–132.Google Scholar
  6. [6]
    A. E. Ingham, A Tauberian theorem for partitions,Annals of Math.,42 (1941), pp. 1075–1090.Google Scholar
  7. [7]
    K. F. Roth andG. Szekeres, Some asymptotic formulae in the theory of partitionsThe Quart. Journ. of Math., Oxford Second Series,5 (1954), pp. 241–259.Google Scholar
  8. [8]
    J. Riordan,An introduction to combinatorial analysis (New York, 1958).Google Scholar
  9. [9]
    P. Erdős andG. Szekeres, Über die Anzahl der Abelschen Gruppen gegebener Ordnung,Acta Litt. ac. Scient. Szeged,7 (1934), pp. 95–102.Google Scholar
  10. [10]
    The series\(\sum {\frac{1}{{\alpha _v }}}\) is ussually called Engel-series of second kind; for its properties and for a proof of (I. 2)–(I. 3) see e. g.P. Erdős, On the integer solutions of the equation\(\frac{1}{{x_1 }} + ... + \frac{1}{{x_n }} = \frac{a}{b}\) (in Hungarian),Matematikai Lapok,I.3 (1950), pp. 192–210.Google Scholar
  11. [11]
    E. Landau,Math. Annalen,56 (1903), pp. 674–678.Google Scholar

Copyright information

© Akadémiai Kiadó 1968

Authors and Affiliations

  • P. Erdős
    • 1
  • P. Turán
    • 1
  1. 1.Budapest

Personalised recommendations