Advertisement

Journal of Classification

, Volume 3, Issue 2, pp 187–224 | Cite as

On the use of ordered sets in problems of comparison and consensus of classifications

  • Jean-Pierre Barthélemy
  • Bruno Leclerc
  • Bernard Monjardet
Authors Of Articles

Abstract

Ordered set theory provides efficient tools for the problems of comparison and consensus of classifications Here, an overview of results obtained by the ordinal approach is presented Latticial or semilatticial structures of the main sets of classification models are described Many results on partitions are adaptable to dendrograms; many results on n-trees hold in any median semilattice and thus have counterparts on ordered trees and Buneman (phylogenetic) trees For the comparison of classifications, the semimodularity of the ordinal structures involved yields computable least-move metrics based on weighted or unweighted elementary transformations In the unweighted case, these metrics have simple characteristic properties For the consensus of classifications, the constructive, axiomatic, and optimization approaches are considered Natural consensus rules (majoritary, oligarchic, ) have adequate ordinal formalizations A unified presentation of Arrow-like characterization results is given In the cases of n-trees, ordered trees and Buneman trees, the majority rule is a significant example where the three approaches converge

Keywords

Hierarchical classification Median Metric Numerical taxonomy Partial order Partition Phylogeny Ultrametric 

Résumé

La théorie des ensembles ordonnés fournit des outils utiles pour les problèmes de comparaison et de consensus de classifications Nous présentons une revue des résultats obtenus grâce à l'approche ordinale Les principaux ensembles de modèles de classifications possèdent des structures de treillis ou de demi-treillis, qui sont décrites Le fait que bien des résultats sur les partitions s'adaptent aux hiérarchies indicées provient de la proximité de leurs structures latticielles; de même, des résultats sur les hiérarchies, portant en fait sur les demi-treillis à médianes, ont des équivalents pour les hiérarchies stratifiées et les arbres phylogénétiques de Buneman Pour la comparaison des classifications, la semi-modularité des structures ordinales prises en compte permet de définir des métriques de plus courts chemins, basées sur des ensembles de transformations élémentaires, et effectivement calculables Lorsque ces transformations ne sont pas pondérées, ces métriques se caractérisent simplement Pour le consensus de classifications, on considère les approches constructive, axiomatique et par optimisation d'un critère On a de bonnes formalisations ordinales de règles naturelles (majoritaire, oligarchique, ), à partir desquelles on obtient une présentation unifiée de divers résultats de type arrowien Dans le cas des hiérarchies, des hiérarchies stratifiées et des arbres de Buneman, un fait important, résultant de leurs structures de demi-treillis à médianes, est que la règle majoritaire peut être obtenue par chacune des trois approches

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ADAMS, E N, III (1972), “Consensus Techniques and the Comparison of Taxonomic Trees,”Systematic Zoology, 21, 390–397Google Scholar
  2. AIGNER, M (1979),Combinatorial Theory, Berlin: Springer-VerlagGoogle Scholar
  3. ARABIE, P, and BOORMAN, S A (1973), “Multidimensional Scaling of Measures of Distances Between Partitions,”Journal of Mathematical Psychology, 17, 31–63Google Scholar
  4. ARROW, K J (1951),Social Choice and Individual Values, New York: WileyGoogle Scholar
  5. BANDELT, H J, and BARTHELEMY, J P (1984), “Medians in Median Graphs,”Discrete Applied Mathematics, 8, 131–142Google Scholar
  6. BARBUT, M (1961), “Médiane, distributivité, éloignements,” repr (1980),Mathématiques et Sciences humaines, 70, 5–31Google Scholar
  7. BARBUT, M, and MONJARDET, B (1970),Ordre et Classification, Algèbre et Combinatoire, Paris: HachetteGoogle Scholar
  8. BARTHELEMY, J P (1978), “Remarques sur les propriétés métriques des ensembles ordonnés,”Mathématiques et Sciences humaines, 61, 39–60Google Scholar
  9. BARTHELEMY, J P (1979a), “Caractérisations axiomatiques de la distance de la différence symétrique entre des relations binaires,”Mathématiques et Sciences humaines, 67, 85–113Google Scholar
  10. BARTHELEMY, J P (1979b), “Propriétés métriques des ensembles ordonnés Comparaison et agrégation des relations binaires,” Thése, Université de BesanconGoogle Scholar
  11. BARTHELEMY, J P (1985), “From Copair Hypergraphs to Median Graphs with Latent Vertices,” submittedGoogle Scholar
  12. BARTHELEMY, J P, and LUONG, X (1986), “Mathématique, algorithmique et histoire des représentations arborées,” submittedGoogle Scholar
  13. BARTHELEMY, J P, and MCMORRIS, F R (1986), “The Median Procedure for n-Trees,“Journal of Classification, 3,329–334Google Scholar
  14. BARTHELEMY, J P, LECLERC, B, and MONJARDET, B (1984a), “Ensembles ordonnés et taxonomie mathématique,” inOrders Description and Roles, eds M Pouzet and D Richard,Annals of Discrete Mathematics, 23, Amsterdam: North-Holland, 523–548Google Scholar
  15. BARTHELEMY, J P, LECLERC, B, and MONJARDET, B (1984b), “Quelques aspects du consensus en classification,” inData Analysis and Informatics III, eds E Didayet al, Amsterdam: North-Holland, 307–316Google Scholar
  16. BARTHELEMY, J P, and MONJARDET, B (1981), “The Median Procedure in Cluster Analysis and Social Choice Theory,”Mathematical Social Sciences, 1, 235–268Google Scholar
  17. BENZECRI, J P (1967), “Description mathématique des classifications,” repr (1973) inL'analyse des données, la Taxinomie, J P Benzécriet coll, Paris: Dunod, 119–152Google Scholar
  18. BIRKHOFF, G (1967),Lattice Theory, 3rd ed, Providence: American Mathematical SocietyGoogle Scholar
  19. BLYTH, T S, and JANOWITZ, M F (1972),Residuation Theory, Oxford: Pergamon PressGoogle Scholar
  20. BOORMAN, S A, and ARABIE, P (1972), “Structural Measures and the Method of Sorting,” inMultidimensional Scaling, Vol 1, Theory and Applications in the Behavioral Sciences, eds R N Shepard, A K Romney and S B Nerlove, New York: Seminar Press, 226–249Google Scholar
  21. BOORMAN, S A, and OLIVIER, D C (1973), “Metrics on Spaces of Finite Trees,”Journal of Mathematical Psychology, 10, 26–59Google Scholar
  22. BORDA, J C (1784),Mémoire sur les élections au scrutin, Histoire de l'Académie Royale des Sciences pour 1781, ParisGoogle Scholar
  23. BORDES, G (1976), “Métriques bornées définies par des valuations sur un demi-treillis,”Mathématiques et Sciences humaines, 56, 89–96Google Scholar
  24. BUNEMAN, P (1971), “The Recovery of Trees from Measures of Dissimilarity,” inMathematics in Archaeological and Historical Sciences, eds F R Hodson, D G Kendall and P Tautu, Edinburgh: Edinburgh University Press, 387–395Google Scholar
  25. COMTET, L (1970), “Sur le quatrième problème et les nombres de Schröder,”Comptes-Rendus Académie des Sciences de Paris, A-271, 913–916Google Scholar
  26. COMTET, L (1974),Advanced Combinatorics, Dordrecht: ReidelGoogle Scholar
  27. CONDORCET, M J A (1785),Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix, ParisGoogle Scholar
  28. DAY, W H E (1981), “The Complexity of Computing Metric Distances Between Partitions,”Mathematical Social Sciences, 1, 269–287Google Scholar
  29. DAY, W H E (1983a), “The Role of Complexity in Comparing Classifications,”Mathematical Biosciences, 66, 97–114Google Scholar
  30. DAY, W H E (1983b), “Computationally Difficult Parsimony Problems in Phylogenetic Systematics,”Journal of Theoretical Biology, 103, 429–438Google Scholar
  31. DAY, W H E (1985), “Optimal Algorithms for Comparing Trees with Labelled Leaves,”Journal of Classification, 2, 7–28MathSciNetGoogle Scholar
  32. DAY, W H E, and FAITH, D P (1986), “A Model in Partial Orders for Comparing Objects by Dualistic Measures,”Mathematical Biosciences, 8, 179–192Google Scholar
  33. DAY, W H E, and MCMORRIS, F R (1985), “A Formalization of Consensus Index Methods,”Bulletin of Mathematical Biology, 47, 215–229Google Scholar
  34. DAY, W H E, and WELLS, R S (1984), “Extremes in the Complexity of Computing Metric Distances Between Partitions,”IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6, 69–73Google Scholar
  35. DIJKSTRA, E W (1959), “A Note on Two Problems in Connection with Graphs,”Numerische Mathematik, 1, 269–271CrossRefGoogle Scholar
  36. DOBINSKY, T (1877), “Summirung der Reihe Σn m/n′ furm = 1,2,3,4,5,,”Grunert Archiv, 61, 333–336Google Scholar
  37. FINDEN, C R, and GORDON, A D (1985), “Obtaining Common Pruned Trees,”Journal of Classification, 2, 255–276Google Scholar
  38. FLAMENT, C (1963),Application of Graph Theory to Group Structure, New York: Prentice HallGoogle Scholar
  39. FOULDS, L R, and ROBINSON, R W (1980), “Determining the Asymptotic Number of Phylogenetic Trees,” inCombinatorial Mathematics VII, Lecture Notes in Mathematics 829, Berlin Springer-Verlag, 110–126Google Scholar
  40. GIBBONS, A (1985),Algorithmic Graph Theory, Cambridge (UK): Cambridge University PressGoogle Scholar
  41. GOWER, J C, and ROSS, G J S (1969), “Minimum Spanning Tree and Single Linkage Cluster Analysis,”Applied Statistics, 18, 54–64Google Scholar
  42. GRATZER, G (1978),General Lattice Theory, Basel: Birkhaüser VerlagGoogle Scholar
  43. GUENOCHE, A (1986), “Etude comparative de cinq algorithmes d'approximation des dissimilarités par des arbres à distances additives,”Mathématiques et Sciences humaines, to appearGoogle Scholar
  44. GUILBAUD, G Th (1952), “Les théories de l'intérêt général et le problème logique de l'agrégation,”Economie Appliquée, 5, 501–551, repr (1968) inEléments de la Théorie des Jeux, Paris: DunodGoogle Scholar
  45. HARARY, F (1969),Graph Theory, Reading, Mass Addison-WesleyGoogle Scholar
  46. HARDING, E S (1971), “The Probability of Rooted Tree-Shapes Generated by Random Bifurcations,”Advances in Applied Probability, 3, 44–77Google Scholar
  47. HARTIGAN, J A (1975),Clustering Algorithms, New York WileyGoogle Scholar
  48. HUBERT, L (1977), “Data Analysis Implications of Some Concepts Related to the Cuts of a Graph,”Journal of Mathematical Psychology, 15, 199–208CrossRefGoogle Scholar
  49. HUBERT, L, and BAKER, F B (1977), “The Comparison and Fitting of Given Classification Schemes,”Journal of Mathematical Psychology, 16, 233–255CrossRefGoogle Scholar
  50. JANOWITZ, M F (1978), “An Order Theoretic Model for Cluster Analysis,”SIAM Journal on Applied Mathematics, 34, 55–72CrossRefGoogle Scholar
  51. JANOWITZ, M F (1985), “A Generalized Setting for Consensus Functions,” University of Massachusetts, Department of Mathematics and StatisticsGoogle Scholar
  52. JARDINE, N, and SIBSON, R (1971),Mathematical Taxonomy, London: WileyGoogle Scholar
  53. JOHNSON, S C (1967), “Hierarchical Clustering Schemes,”Psychometrika, 32, 241–254Google Scholar
  54. KEMENY, J G (1959), “Mathematics without Numbers,”Daedalus, 88, 575–591Google Scholar
  55. KNUTH, D E (1973),The Art of Computer Programming, Vol 3, Searching, Reading, Mass: Addison-WesleyGoogle Scholar
  56. LECLERC, B (1979), “Semi-modularité des treillis d'ultramétriques,”Comptes-Rendus Académie des Sciences de Paris, A-288, 575–577Google Scholar
  57. LECLERC, B (1981), “Description combinatoire des ultramétriques,”Mathématiques et Sciences humaines, 73, 5–37Google Scholar
  58. LECLERC, B (1984a), “Efficient and Binary Consensus Functions on Transitively Valued Relations,”Mathematical Social Sciences, 8, 45–61CrossRefGoogle Scholar
  59. LECLERC, B (1984b), “Indices compatibles avec une structure de treillis et fermeture résiduelle,” Technical Report P 011, Centre d'Analyse et de Mathématique SocialesGoogle Scholar
  60. LECLERC, B (1985a) “Les hiérarchies de parties et leurs demi-treillis,”Mathématiques et Sciences humaines, 89, 5–34Google Scholar
  61. LECLERC, B (1985b), “La comparaison des hiérarchies: indices et métriques,”Mathématiques et Sciences humaines, 92, 5–40Google Scholar
  62. MARCOTORCHINO, F, and MICHAUD, P (1982), “Agrégation de similarités en classification automatique,”Revue de Statistique Appliquée, 30, 21–44Google Scholar
  63. MARGUSH, T (1982), “Distances Between Trees,”Discrete Applied Mathematics, 4, 281–290CrossRefGoogle Scholar
  64. MARGUSH, T, and MCMORRIS, F R (1981), “Consensus n-Trees,”Bulletin of Mathematical Biology, 43, 239–244Google Scholar
  65. MCMORRIS, F R (1985), “Axioms for Consensus Functions on Undirected Phylogenetic Trees,”Mathematical Biosciences, 74, 17–21CrossRefGoogle Scholar
  66. MCMORRIS F R, and NEUMANN, D A (1983), “Consensus Functions on Trees,”Mathematical Social Sciences, 4, 131–136CrossRefGoogle Scholar
  67. MIRKIN, B G (1975), “On the Problem of Reconciling Partitions,” inQuantitative Sociology, International Perspectives on Mathematical and Statistical Modelling, New York: Academic Press, 441–449Google Scholar
  68. MIRKIN, B G, and CHERNYI, L B (1970), “On Measurement of Distance Between Partitions of a Finite Set of Units,”Automation and Remote Control, 31, 786–792Google Scholar
  69. MONJARDET, B (1976), “Caractérisations métriques des ensembles ordonnés semimodulaires,”Mathématiques et Sciences humaines, 56, 77–87Google Scholar
  70. MONJARDET, B (1980), “Théorie et applications de la médiane dans les treillis distributifs finis,”Annals of Discrete Mathematics, 9, 87–91Google Scholar
  71. MONJARDET, B (1981), “Metrics on Partially Ordered Sets, A Survey,”Discrete Mathematics, 35, 173–184CrossRefGoogle Scholar
  72. MONJARDET, B (1986), “Characterizations of Polynomial Functions in Median Semilattices,” Technical Report, Centre d'Analyse et de Mathématique SocialesGoogle Scholar
  73. NEUMANN, D A (1983), “Faithful Consensus Methods for n-Trees,”Mathematical Biosciences, 63, 271–287CrossRefGoogle Scholar
  74. NEUMANN, D A, and NORTON, V (1985), “Consensus of Partitions with Applications to Other Structures,” Technical Report n° 85-20, Bowling Green State University, Department of Mathematics and StatisticsGoogle Scholar
  75. PUDLAK, P, and TUMA, J (1980), “Every Finite Lattice Can be Embedded in the Lattice of all Equivalences Over a Finite Set,”Algebra Universalis, 10, 74–95Google Scholar
  76. REGNIER, S (1965), “Sur quelques aspects mathématiques des problémes de classification automatique,”ICC Bulletin, 4, 175–191, repr (1983),Mathématiques et Sciences humaines, 82, 13–29Google Scholar
  77. REGNIER, S (1977), “Stabilité d'un opérateur de classification,”Mathématiques et Sciences humaines, 60, 21–30Google Scholar
  78. ROBINSON, D F (1971) “Comparison of Labelled Trees with Valency Three,”Journal of Combinatorial Theory, 11, 105–119CrossRefGoogle Scholar
  79. ROBINSON, D F, and FOULDS, L R (1981), “Comparison of Phylogenetic Trees,”Mathematical Biosciences, 53, 131–147CrossRefGoogle Scholar
  80. ROHLF, F J (1982), “Consensus Indices for Comparing Classifications,“Mathematical Biosciences, 59, 131–144CrossRefGoogle Scholar
  81. SCHADER, M (1980), “Hierarchical Analysis: Classification with Ordinal Object Dissimilarities,”Metrika, 27, 127–132Google Scholar
  82. SHOLANDER, M (1954), “Medians, Lattices and Trees,”Proceedings of the American Mathematical Society, 5, 808–812Google Scholar
  83. STINEBRICKNER, R (1984), “s-Consensus Trees and Indices,”Bulletin of Mathematical biology, 46, 923–935Google Scholar
  84. YOUNG, H P, and LEVENGLICK, A (1978), “A Consistent Extension of Condorcet's Election Principle,”SIAm Journal on Applied Mathematics, 35, 285–300CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1986

Authors and Affiliations

  • Jean-Pierre Barthélemy
    • 1
  • Bruno Leclerc
    • 2
  • Bernard Monjardet
    • 2
  1. 1.E N S TParis Cedex 13France
  2. 2.C A M SParis Cedex 06France

Personalised recommendations