Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On event horizons in static space-times

Abstract

A proof of the (vacuum) Israel theorem on event horizons in static space-times is given employing the Newman-Penrose formalism. The theorem is extended to include the case of a static, massive, complex, scalar field.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Israel, W.: Phys. Rev.164, 1776 (1967).

  2. 2.

    —— Commun. math. Phys.8, 245 (1968).

  3. 3.

    Chase, J. E.: Commun. math. Phys.19, 276 (1970).

  4. 4.

    Penrose, R.: Riv. Nuovo Cimento1, 252 (1969).

  5. 5.

    Carter, B.: Phys. Rev. Letters26, 331 (1971).

  6. 6.

    Newman, E. T., Penrose, R.: J. Math. Phys.3, 566 (1962).

  7. 7.

    Pirani, F.A.E.: Lectures on general relativity (Brandeis Summer Institute, 1964). Englewood Cliffs, N.J.: Prentice Hall 1965.

  8. 8.

    Geroch, R., Held, A., Penrose, R.: Preprint.

  9. 9.

    Israel, W.: GRG2, 53 (1971).

Download references

Author information

Additional information

Supported in part by the National Research Council of Canada.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ludwig, G. On event horizons in static space-times. Commun.Math. Phys. 23, 255–261 (1971). https://doi.org/10.1007/BF01893615

Download citation

Keywords

  • Neural Network
  • Statistical Physic
  • Complex System
  • Nonlinear Dynamics
  • Scalar Field