Constructive Approximation

, Volume 2, Issue 1, pp 377–392 | Cite as

Converse theorems for approximation by bernstein polynomials in Lp[0,1] (1<p<∞)

  • K. G. Ivanov


The class of all continuous functions possessing n−α(1/p<α≤1) order of approximation by Bernstein polynomials inLp[0, 1] is characterized.

AMS classification

41A25 41A27 41A36 41A40 

Key words and phrases

Bernstein polynomials Order of approximation inLp Saturation classes Inverse theorems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Berens, G. G. Lorentz (1972):Inverse theorems for Bernstein polynomials. Indiana Univ. Math. J.,21:693–708.Google Scholar
  2. 2.
    R. DeVore, S. D. Riemenschneider, R. C. Sharpley (1979):Weak interpolation in Banach spaces. J. Fund. Anal.,33:58–94.Google Scholar
  3. 3.
    Z. Ditzian (1980):On interpolation of L p [a,b] and weighted Sobolev spaces. Pacific J. Math.,90:307–324.Google Scholar
  4. 4.
    K. G. Ivanov (1982):On a new characteristic of functions. Serdica,8:262–279.Google Scholar
  5. 5.
    K. G. Ivanov (1982):On Bernstein polynomials. C. R. Acad. Bulgare Sci.,35:893–896.Google Scholar
  6. 6.
    K. G. Ivanov (1983):A constructive characteristic of the best algebraic approximation in L p[−1, 1] (1≤p≤∞). Constructive Function Theory '81, Sofia, pp. 357–367.Google Scholar
  7. 7.
    K. G. Ivanov (1984):Approximation by Bernstein polynomials in L p metric. Constructive Theory of Functions '84, Sofia, pp. 421–429.Google Scholar
  8. 8.
    K. G. Ivanov (1985):On the behavior of two moduli of functions. C. R. Acad. Bulgare Sci.,38:539–542.Google Scholar
  9. 9.
    K. G. Ivanov (1985):On the behavior of two moduli of functions, II. Serdica (to appear).Google Scholar
  10. 10.
    K. G. Ivanov (unpublished):A characterization of weighted Peetre K-functionals.Google Scholar
  11. 11.
    K. de Leeuw (1959):On the degree of approximation by Bernstein polynomials. J. Analyse Math.,7:89–104.Google Scholar
  12. 12.
    V. Maier (1978):L p-approximation by Kantorovic operators. Anal. Math.,4:289–295.Google Scholar
  13. 13.
    S. D. Riemenschneider (1978):The L p-saturation of Bernstein-Kantorovitch polynomials. J. Approx. Theory,23:158–162.Google Scholar
  14. 14.
    V. Totik (1983):L p (p>1)-approximation by Kantorovich polynomials. Analysis,3:79–100.Google Scholar
  15. 15.
    V. Totik (1984):The necessity of a new kind of modulus of smoothness. Anniversary Volume on Approximation Theory and Functional Analysis, ISNM 65, pp. 233–248.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • K. G. Ivanov
    • 1
  1. 1.Institute of MathematicsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations