Constructive Approximation

, Volume 2, Issue 1, pp 11–22 | Cite as

Interpolation of scattered data: Distance matrices and conditionally positive definite functions

  • Charles A. Micchelli


Among other things, we prove that multiquadric surface interpolation is always solvable, thereby settling a conjecture of R. Franke.

AMS classification

41A05 41A63 

Key words and phrases

Multivariate interpolation Multiquadric surface Thin plate splines Positive definite functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Abramowitz, I. A. Stegun (1966): Handbook of Mathematical Functions (National Bureau of Standards Applied Mathematics Series 55). Washington, D.C.: National Bureau of Standards.Google Scholar
  2. 2.
    F. P. Agterberg (1974): Geomathematics. Amsterdam: Elsevier.Google Scholar
  3. 3.
    N. Aronszajn (1950):Theory of reproducing kernels. Trans. Amer. Math. Soc.,68:337–404.Google Scholar
  4. 4.
    R. Askey (1973): Radial Characteristic Functions (MRC Technical Sum: Report no. 1262). University of Wisconsin.Google Scholar
  5. 5.
    R. Barnhill, S. Stead (1983):Multistage trivariate surfaces. Preprint.Google Scholar
  6. 6.
    Blumenthal (1970): Theory and Application of Distance Geometry. New York: Chelsea Publishing.Google Scholar
  7. 7.
    W. F. Donoghue (1974): Monotone Matrix Functions and Analytic Continuation. Berlin Heidelberg New York: Springer-Verlag.Google Scholar
  8. 8.
    J. Duchon (1976):Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Constructive Theory of Functions of Several Variables (W. Schempp, K. Zeller, eds.). Berlin Heidelberg New York: Springer-Verlag.Google Scholar
  9. 9.
    N. Dyn, D. Levin, S. Rippa (1983):Numerical procedures for global surface smoothing of noisy scattered data. Preprint.Google Scholar
  10. 10.
    R. Franke (1982):Scattered data interpolation: tests of some methods. Math. Comp.,38:381–200.Google Scholar
  11. 11.
    R. Franke (1983):Lecture notes on global basis function methods for scattered data. International Symposium on Surface Approximation, University of Milano, Govgano, Italy.Google Scholar
  12. 12.
    G. Gasper (1975):Positivity and special functions. In: The Theory and Application of Special Functions (R. Askey, ed.). New York: Academic Press.Google Scholar
  13. 13.
    I. M. Gelfand, N. Ya. Vilenkin (1964): Generalized Functions, Vol. 4. New York: Academic Press.Google Scholar
  14. 14.
    R. L. Hardy (1971):Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res., C.Google Scholar
  15. 15.
    R. L. Hardy (1982):Surface fitting with biharmonic and harmonic models. In: Proceedings of the NASA Workshop on Surface Fitting. College Station, Texas: Center for Approximation Theory, Texas A & M University, pp. 136–146.Google Scholar
  16. 16.
    S. Helgason (1980): The Radon Transform. Basel: Birkhäuser.Google Scholar
  17. 17.
    J. V. Linnik (1953):Linear forms and statical criteria, II. Ukrain. Mat. Zh.,51:247–290 [also (1962): Selected Translations in Mathematical Statistics and Probability, Vol. 5. Providence: American Mathematical Society, pp. 41–90].Google Scholar
  18. 18.
    E. Luckas (1970): Characteristic Functions. New York: Hafner.Google Scholar
  19. 19.
    G. Matheron (1973):The intrinsic random functions and their applications. Adv. in Appl. Probab.,5:439–468.Google Scholar
  20. 20.
    G. Matheron (1981):Splines and kriging: their formal equivalence. In: Syracuse University Geology Contribution 8 (D. F. Marriam, ed.). Syracuse, New York: Department of Geology, Syracuse University.Google Scholar
  21. 21.
    J. Meinguet (1979):An intrinsic approach to multivariate spline interpolation at arbitrary points. In: Polynomial and Splines Approximation (B. N. Sahney, ed.). Dordrecht: D. Reidel, pp. 163–190.Google Scholar
  22. 22.
    J. von Neumann, I. J. Schoenberg (1941):Fourier integrals and metric geometry. Trans. Amer. Math. Soc.,50:226–251.Google Scholar
  23. 23.
    K. Salkauskas (1982):Some relationships between surface splines and kriging. In: Multivariate Approximation Theory II (W. Schempp, K. Zeller, eds.). Basel: Birkhäuser, pp. 313–325.Google Scholar
  24. 24.
    I. P. Schagen (1979):Interpolation in two dimensions — a new technique. J. Inst. Math. Appl.,23:53–59.Google Scholar
  25. 25.
    I. J. Schoenberg (1935):Remarks to Maurice Frechet's article “Sur la definition axiomatique d'une classe d'espace distancies vectoriellemment applicable sur l'espace de Hilbert.” Ann. of Math.,36:724–732.Google Scholar
  26. 26.
    I. J. Schoenberg (1938):Metric spaces and positive definite functions. Trans. Amer. Math. Soc.,44:522–536.Google Scholar
  27. 27.
    I. J. Schoenberg (1938):Metric spaces and completely monotone functions. Ann. of Math.,39:811–841.Google Scholar
  28. 28.
    J. Stewart (1976):Positive definite functions and generalizations, an historical survey. Rocky Mountain J. Math.,6:409–434.Google Scholar
  29. 29.
    Wahba (1982): Private communication.Google Scholar
  30. 30.
    G. N. Watson (1966): Theory of Bessel Functions, 2nd ed. Cambridge: Cambridge University Press.Google Scholar
  31. 31.
    D. V. Widder (1946): The Laplace Transform. Princeton: Princeton University Press.Google Scholar
  32. 32.
    R. E. Williamson (1956):Multiply monotone functions and their Laplace transform. Duke Math. J.,23:189–207.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • Charles A. Micchelli
    • 1
  1. 1.IBM Thomas J. Watson Research CenterYorktown Heights, New York

Personalised recommendations