, Volume 29, Issue 1, pp 95–102 | Cite as

Charakterisierung der zweiseitigen Exponentialverteilung

  • P. Findeisen


LetF (θ) be a family of distribution functions with a translation parameter θ such thatF (0) has a densityf. It is well known that each sample median is a maximum likelihood estimate of θ, iff belongs to the classE of all bilateral exponential densities which are symmetric about 0. Here it is shown that, conversely,f∈E holds, either if there is an evenm such that for every sample of sizem each median is an MLE of θ, or if there is an infinite setM such that for every sample of any sizem∈M at least one median is an MLE of θ.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Czuber, E.: Theorie der Beobachtungsfehler. Leipzig 1891.Google Scholar
  2. Estienne, J.E.: Etude sur les erreurs d'observation. Revue d'artillerie36, 1890, 236–259.Google Scholar
  3. Feller, W.: An introduction to probability theory and its applications. New York 1966.Google Scholar
  4. Findeisen, P.: Die Charakterisierung der Normalverteilung nach Gauß. Metrika29, 1982, 55–63.Google Scholar
  5. Hajek, J.: Nonparametric statistics. San Francisco 1969.Google Scholar
  6. Hajek, J., undZ. Sidak: Theory of Rank Tests. New York 1967.Google Scholar
  7. Mathai, A.M., undG. Pederzoli: Characterizations of the normal probability law. New Delhi 1977.Google Scholar
  8. Müller, P.H. (Hrsg.): Lexikon der Stochastik. Berlin 1975.Google Scholar
  9. Teicher, H.: Maximum Likelihood characterization of distributions. Ann. Math. Statist.32, 1961, 1214–1222.Google Scholar
  10. Yellot, J.I.: The relationship between Luce's choice axiom, Thurstone's theory of comparative judgment, and the double exponential distribution. Journ. Math. Psych.15, 1977, 109–144.Google Scholar

Copyright information

© Physica-Verlag 1982

Authors and Affiliations

  • P. Findeisen
    • 1
  1. 1.Psychologisches Institut der Universität DüsseldorfDüsseldorf

Personalised recommendations