Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Covalent structure of botulinum neurotoxin type A: Location of sulfhydryl groups, and disulfide bridges and identification of C-termini of light and heavy chains

Abstract

Botulinum neurotoxin Type A is synthesized byClostridium botulinum as a ∼150 kD single chain polypeptide. The posttranslational processing of the 1296 amino acid residue long gene product involves removal of the initiating methionine, formation of disulfide bridges, and limited proteolysis (nicking) by the bacterial protease(s). The mature dichain neurotoxin is made of a ∼50-kD light chain and a ∼100-kD heavy chain connected by a disulfide bridge. DNA derived amino acid sequencepredicted a total of 9 Cys residues (Binzet al., 1990,J. Biol. Chem. 265, 9153–9158; Thompsonet al., 1990,Eur. J. Biochem. 189, 73–81). Treatment of the dichain neurotoxin, dissolved in 6 M guanidine. HCl, with 4-vinylpyridine converted 5 Cys residues into S-pyridylethyl cysteine residues; but alkylation after mercaptolysis converted all 9 Cys residues in the S-pyridylethylated form. After confirming the predicted number of Cys residues by amino acid analysis, the positions of the 5 Cys residues carrying sulfhydryl groups and the 4 involved in disulfide bridges were determined by comparing the elution patterns in reversed-phase HPLC of the cyanogen bromide mixtures of the exclusively alkylated and the mercaptolyzed-alkylated neurotoxin. The chromatographically isolated components were identified by N-terminal amino acid sequence analysis. The HPLC patterns showed characteristic differences. The Cys residuespredicted in positions 133, 164, 790, 966, and 1059 were found in the sulfhydryl form; Cys 429 and 453 were found disulfide-bridged connecting the light and heavy chains, and Cys 1234 and 1279 were found in an intrachain disulfide-bridge near the C-terminus in the heavy chain. Ten amino acid residues, Thr 438-Lys 447,predicted to be present in the single chain neurotoxin were not found in the dichain neurotoxin. Nicking of single-chain neurotoxin by the protease(s) endogenous to the bacteria therefore appears to excise these 10 amino acid residues from the nicking region which leaves Lys 437 as the C-terminus of the light chain and Ala 448 as the N-terminus of the heavy chain. The N-terminal Pro 1 and C-terminal Leu 1295,predicted from the nucleotide sequence, remain conserved after nicking. Residues Pro 1-Lys 437 and Ala 448-Leu 1295 constitute the light and heavy chains, respectively. The C-termini were determined by isolation of short C-terminal peptide fragments and subsequent sequence analysis by Edman degradation. About 20% of the amino acid sequence predicted from DNA analysis was confirmed in these studies by protein-chemical methods.

This is a preview of subscription content, log in to check access.

References

  1. Barinaga, M. (1993).Science 260, 487–489.

  2. Betley, M., Somers, E., and DasGupta, B. R. (1989).Biochem. Biophys. Res. Commun. 162, 1388–1395.

  3. Binz, T., Kurazono, H., Popoff, M. R., Eklund, M. W., Sakaguchi, G., Kozaki, S., Krieglstein, K., Henschen, A., Gill, D. M., and Niemann, H. (1990b).Nucl. Acids Res. 18, 5556.

  4. Binz, T., Kurazono, H., Wille, M., Frevert, J., Wernars, K., and Niemann, H. (1990a).J. Biol. Chem. 265, 9153–9158.

  5. DasGupta, B. R. (1990).J. Physiol. (Paris) 84, 220–228.

  6. DasGupta, B. R., and Dekleva, M. L. (1990).Biochimie 72, 661–664.

  7. DasGupta, B. R., and Foley, J. (1989).Biochimie 71, 1193–1200.

  8. DasGupta, B. R., and Sathyamoorthy, V. (1984).Toxincon 22, 415–424.

  9. DasGupta, B. R., and Sugiyama, H. (1972).Biochem. Biophys. Res. Commun. 48, 108–112.

  10. DasGupta, B. R., and Sugiyama, H. (1978).Abstr. Am. Soc. Microbiol. p. 25.

  11. DeKleva, M. L., and DasGupta, B. R. (1989).Biochem. Biophys. Res. Commun. 162, 767–772.

  12. East, A. K., Richardson, P. T., Allaway, D., Collins, M. D., Roberts, T. A., and Thompson, D. E. (1992).FEMS Microbiol. Lett. 96, 225–230.

  13. Edman, P., and Henschen, A. (1975). InProtein Sequence Determination (Needleman, S. B., ed.), 2nd ed., Springer-Verlag, Berlin, pp. 232–279.

  14. Gimenez, J. A., and DasGupta, B. R. (1993).J. Protein Chem. 12, 349–361.

  15. Hauser, D., Eklund, M. W., Kurazono, H., Binz, T., Neimann, H., Gill, D. M., Boquet, P., and Popoff, M. R. (1990).Nucl. Acids Res. 18, 4924.

  16. Henschen, A. (1986). InAdvanced Methods in Protein Microsequence Analysis (Wittmann-Liebold, B., Salnikow, J., and Erdmann, V. A., eds.), Springer-Verlag, Berlin, pp. 244–255.

  17. Jankovic, J., and Brin, M. F. (1991).New Eng. J. Med. 324, 1186–1194.

  18. Krieglstein, K., Henschen, A., Weller, U., and Habermann, E. (1990).Eur. J. Biochem. 188, 39–45.

  19. Kurazono, H., Mochida, S., Binz, T., Eisel, U., Quanz, M., Grebenstein, O., Wernars, K., Poulains, B., Tauc, L., and Niemann, H. (1922).J. Biol. Chem. 267, 14721–14729.

  20. Lottspeiich, F., and Henschen, A. (1985). InHigh-performance Liquid Chormatography in Biochemistry (Henschen, A., Hupe, K. P., Lottspeich, F., and Boelter, W., eds.), Verlag Chemie, Weinheim, pp. 139–216.

  21. Niemann, H. (1991). InSourcebook of Bacterial Protein Toxins (Alouf, J., and Freer, J., eds.), Academic Press, New York, pp. 303–348.

  22. Poulet, S., Hauser, D., Quanz, M., Niemann, H., and Popoff, M. R. (1992).Biochem. Biophys. Res. Commun. 183, 107–113.

  23. Sathyammorty, V., DasGupta, B. R., Foley, J., and Niece, R. L., (1988).Arch. Biochem. Biophys. 266, 142–151.

  24. Sathyamoorthy, V., and DasGupta, B. R. (1985).J. Biol. Chem. 260, 10461–10466.

  25. Schiavo, G., Benfenati, F., Poulain, B., Rossetto, O., de Laureto, P. P., DasGupta, B. R., and Montecucco, C. (1992).Nature 359, 832–834.

  26. Schmidt, J. J., Sathyamoorthy, V., and DasGupta, B. R. (1984).Biochem. Biophys. Res. Commun. 119, 900–904.

  27. Shone, C. C., Hembleton, P., and Melling, J. (1985).Eur. J. Biochem. 151, 75–82.

  28. Stevens, R. C., Evenson, J. L., Tepp, W., and DasGupta, B. R. (1991).J. Mol. Biol. 222, 877–880.

  29. Thompson, D. E., Brehm, J. K., Oultram, J. D., Sweingfield, T.-J., Shone, C. C., Atkinson, T., Melling, J., and Minton, N. P. (1990).Eur. J. Biochem. 189, 73–81.

  30. Whelan, S. M., Elmore, M. J., Bodsworth, N. J., Atkinson, T., and Minton, N. P. (1992b).Eur. J. Biochem. 204, 657–667.

  31. Whelan, S. M., Elmore, M. J., Bodsworth, N. J., Brehm, J. K., Atkinson, T., and Minton, N. P. (1992a).Appl. Environ. Microbiol. 58, 2345–2354.

Download references

Author information

Correspondence to Bibhuti R. DasGupta.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kriegistein, K.G., DasGupta, B.R. & Henschen, A.H. Covalent structure of botulinum neurotoxin type A: Location of sulfhydryl groups, and disulfide bridges and identification of C-termini of light and heavy chains. J Protein Chem 13, 49–57 (1994). https://doi.org/10.1007/BF01891992

Download citation

Key words

  • Botulinum neurotoxin
  • CNBr fragmentation
  • HPLC separation
  • sulfhydryl
  • disulfide
  • C-termini