Journal of Protein Chemistry

, Volume 13, Issue 2, pp 195–215 | Cite as

Contribution of unusual Arginine-Arginine short-range interactions to stabilization and recognition in proteins

  • A. Magalhaes
  • B. Maigret
  • J. Hoflack
  • J. N. F. Gomes
  • H. A. Scheraga
Article

Abstract

Although the majority of the ion pairs found in proteins consists of two charges of opposite sign, the observation of some unusual arrangements of two arginines led us to a search of such occurrences in the Brookhaven Protein Data Bank. We have found 41 Arginine-Arginine interactions with a Cζ...Cζ distance less than 5 å. Computer graphics analysis of these structures shows that most of the Arg-Arg pairs are found in the vicinity of the surface of the proteins, in an easily hydrated region. In order to determine which factors could stabilize such arrangements of species of similar charge, we have carried out AM1 semi-empirical calculations on a model of two guanidinium ions surrounded by several water molecules. The results show the existence of stable clusters with six or more water molecules, with distances between Cζ atoms around 3 å. The bridging role of the water molecules is an important structural and energetic feature and we find bridges of two and three molecules between the guanidinium ions. These results are in good agreement with the structures found in our search of the experimental data. Enhancement of the electrostatic potential around these clusters, when compared to one of the guanidinium ions alone, is also demonstrated.

Key words

Arginine guanidinium ion-pair interactions solvation electrostatic semi-empirical 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, E., Vriend, G., Luo, M., Griffith, J. P., Kramer, G., Erickson, J. W., Johnson, J. E., and Rossman, M. G. (1987).Acta Crystallogr. sect. A. 43, 346–361.Google Scholar
  2. Baker, E. N., and Hubbard, R. E. (1984).Prog. Biophys. Molec. Biol. 44, 97–179.Google Scholar
  3. Baldwin, J. M. (1975).Prog. Biophys. Mol. Biol. 29, 225–320.PubMedGoogle Scholar
  4. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Jr., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., and Tasumi, M. (1977).J. Mol. Biol. 112, 535–542.PubMedGoogle Scholar
  5. Boudon, S., Wipff, G., and Maigret, B. (1990).J. Phys. Chem. 94, 6056–6061.Google Scholar
  6. Bray, D. D., Slattery, N., and Russell, C. S. (1984).Int. J. Peptide Protein Res. 24, 414–418.Google Scholar
  7. Brooks, C. L., Karplus, M., and Pettitt, B. M. (1988).Adv. Chem. Phys. 71, 137–175.Google Scholar
  8. Brünger, A. T., Brooks, C. L., and Karplus, M. (1985).Proc. Natl. Acad. Sci. USA 82, 8458–8462.PubMedGoogle Scholar
  9. Cramer, C. J., and Truhlar, D. G. (1991).J. Am. Chem. Soc. 113, 8305–8311.Google Scholar
  10. Dannenberg, J. J., and Vinson, L. K. (1988).J. Phys. Chem. 92, 5635–5639.Google Scholar
  11. Davies, D. R., Padlan, E. A., and Sheriff, S. (1990).Annu. Rev. Biochem. 59, 439–473.PubMedGoogle Scholar
  12. Davidon, W. C. (1969).Computer Journal 10, 406–410.Google Scholar
  13. Dean, P. N. (1987).Molecular Foundations of Drug-Receptor Interaction, Cambridge U. Press, Cambridge.Google Scholar
  14. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., and Stewart, J. J. P. (1985).J. Am. Chem. Soc. 107, 3902–3909.Google Scholar
  15. Fletcher, R., and Powell, M. J. D. (1963).Computer Journal 6, 163–168.Google Scholar
  16. Gao, J., Boudon, S., and Wipff, G. (1991).J. Am. Chem. Soc. 113, 9610–9614.Google Scholar
  17. Getzoff, E. D., Tainer, J. A., Weiner, P. K., Kollman, P. A., Richardson, J. S., and Richardson, D. C. (1983).Nature 306, 287–290.PubMedGoogle Scholar
  18. Horovitz, A., Serrano, L., Avron, B., Bycroft, M., and Fersht, A. R. (1990).J. Mol. Biol. 216, 1031–1044.PubMedGoogle Scholar
  19. Jeffrey, G. A., and Mitra, J. (1984).J. Am. Chem. Soc. 106, 5546–5553.Google Scholar
  20. Kistenmacher, H., Popkie, H., and Clementi, E. (1973).J. Chem. Phys. 58, 5627–5638.CrossRefGoogle Scholar
  21. Lehmann, M. S., Verbist, J. J., Hamilton, W. C., and Koetzle, T. F. (1973).J. Chem. Soc.-Perkin II 133–137.Google Scholar
  22. Liotard, D. A., Healy, E. F., Ruiz, J. M., and Dewar, M. J. S. (1989). AMPAC, version 2.1, QCPE program number 506.Google Scholar
  23. Mitchell, J. B. O., Thornton, J. M., and Singh, J. (1992).J. Mol. Biol. 226, 251–262.PubMedGoogle Scholar
  24. Mrabet, N. T., Van den Broeck, A., Van den Brande, I., Stanssens, P., Laroche, Y., Lambeir, A.-M., Matthijssens, G., Jenkins, J., Chiadmi, M., van Tilbeurgh, H., Rey, F., Janin, J., Quax, W. J., Lasters, I., de Maeyer, M., and Wodak, S. J. (1992).Biochemistry 31, 2239–2253.PubMedGoogle Scholar
  25. Perrin, C. L., and Gipe, R. K. (1986).J. Am. Chem. Soc. 108, 1088–1089.Google Scholar
  26. Perutz, M. F. (1978).Science 201, 1187–1191.PubMedGoogle Scholar
  27. Pettitt, B. M., and Rossky, P. J. (1986).J. Chem. Phys. 84, 5836–5844.Google Scholar
  28. Sapse, A. M., and Massa, L. J. (1980).J. Org. Chem. 45, 719–721.Google Scholar
  29. Schultz, P. G. (1989).Acc. Chem. Res. 22, 287–294.Google Scholar
  30. Sheridan, R. P., and Allen, L. C. (1981).J. Am. Chem. Soc. 103, 1544–1550.Google Scholar
  31. Sheriff, S., Silverton, E. W., Padlan, E. A., Cohen, G. H., Smith-Gill, S. J., Finzel, B. C., and Davies, D. R. (1987).Proc. Natl. Acad. Sci. USA 84, 8075–8079.PubMedGoogle Scholar
  32. Singh, J., Thornton, J. M., Snarey, M., and Campbell, S. F. (1987).FEBS Letters 224, 161–171.PubMedGoogle Scholar
  33. Singh, J., and Thornton, J. M. (1992).Atlas of Protein Side-Chain Interactions, IRL Press, Oxford, UK.Google Scholar
  34. Sternberg, M. J. E., Hayes, F. R. F., Russell, A. J., Thomas, P. G., and Fersht, A. R. (1987).Nature 330, 86–88.PubMedGoogle Scholar
  35. Stewart, J. J. P. (1990). MOPAC, version 6.0, QCPE program number 455.Google Scholar
  36. Sutton, L. E. (1965). Tables of Interatomic Distances and Configuration in Molecules and Ions, Supplement 1956–1959, London, The Chemical Society, Burlington House, W.1.Google Scholar
  37. Van Belle, D., Couplet, I., Prevost, M., and Wodak, S. J. (1987).J. Mol. Biol. 198, 721–735.PubMedGoogle Scholar
  38. Warshel, A. (1981).Acc. Chem. Res. 14, 284–290.Google Scholar
  39. Warshel, A., and Russell, S. T. (1984).Quarterly Rev. Biophys. 17, 283–422.Google Scholar
  40. Warshel, A. (1987).Nature 330, 15–16.PubMedGoogle Scholar
  41. Weaver, D. F., Khalil, M., and Smith, Jr. V. H. (1991).J. Mol. Struct. 226, 73–86.Google Scholar
  42. Williams, M. L., and Gready, J. E. (1989).J. Comp. Chem. 10, 35–54.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • A. Magalhaes
    • 1
  • B. Maigret
    • 2
  • J. Hoflack
    • 3
  • J. N. F. Gomes
    • 1
  • H. A. Scheraga
    • 4
  1. 1.Departamento de Quimica, Faculdade de CienciasUniversidade do PortoPortoPortugal
  2. 2.Laboratoire de Chimie TheoriqueUniversité de Nancy-1Vandoeuvre les Nancy cedexFrance
  3. 3.Marion-Merrell-Dow Research Institute FranceStrasbourgFrance
  4. 4.Baker Laboratory of ChemistryCornell UniversityIthaca

Personalised recommendations