Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Padé tables of entire functions of very slow and smooth growth

  • 34 Accesses

  • 15 Citations

Abstract

Letf(z)=σ j−o a j z j be entire with

$$|a_{j - 1} a_{j + 1} /a_j^2 | \leqslant \rho _0^2 ,j = 1,2,3, \ldots ,$$

whereρ 0=0.4559... is the positive root of the equation

$$2\sum\limits_{j = 1}^\infty {\rho ^{j^2 } = 1.}$$

.

It is shown that the Padé table off is normal, and asL→∞, [L/M L ](z) converges uniformly in compact subsets ofC tof, for any sequence of nonnegative integers {M L } L=1 . In particular, the diagonal sequence {[L/L]} converges uniformly in compact subsets ofC tof. Furthermore, the constantρ 0 is shown to be best possible in a strong sense.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    R. J. Arms, A. Edrei (1970):The Padé tables and continued fractions generated by totally positive sequences. In: Mathematical Essays Dedicated to A. J. Macintyre. Athens, Ohio: Ohio University Press, pp. 1–21.

  2. 2.

    G. A. Baker, Jr. (1975): Essentials of Padé Approximants. New York: Academic Press.

  3. 3.

    G. A. Baker, Jr., P. R. Graves-Morris (1981): Padé approximants, Part I. Encyclopedia of Mathematics and Its Applications, vol. 13. Reading, Massachusetts: Addison-Wesley.

  4. 4.

    M. B. Balk (1960): The Padé Interpolation Process for Certain Analytic Functions [Issledovaniya po Sovremennym Problemam Teorii Funkcii Kompleksnogo Peremennogo]. Moscow: Gosudarstv. Izdat. Fiz.-Mat. Lit., pp. 234–257.

  5. 5.

    C. Brezinski (1983):Outlines of Padé approximation. In: Computational Aspects of Complex Analysis-Proceedings of the NATO Advanced Study Institute at Braunlage (H. Werner, L. Wuytack, E. Ng, H. J. Bünger, eds.). Dordrecht: Reidel, pp. 1–52.

  6. 6.

    R. A. Brualdi, H. Schneider (1981):Determinants identities: Gauss, Schur, Cauchy, Sylvester, Kronecker, Jacobi, Binet, Laplace, Muir, and Cayley. Lin. Alg. and Appl.,52/53:769–791.

  7. 7.

    P. Camion, A. J. Hoffman (1966):On the nonsingularity of complex matrices. Pac. J. Math.,17:211–214.

  8. 8.

    A. A. Gonchar (1983):On uniform convergence of diagonal Padé approximants. Math. USSR Sbornik,46:539–559.

  9. 9.

    P. R. Graves-Morris (1981):The convergence of ray sequences of Padé approximants of Stieltjes functions. J. Comp. Appl. Math.,7:191–201.

  10. 10.

    D. S. Lubinsky (in press);Padé tables of a class of entire functions. Proc. Amer. Math. Soc.

  11. 11.

    J. Nuttall:Asymptotics of diagonal Hermite-Padé polynomials. J. Approx. Th., 42 (1984), 299–386.

  12. 12.

    A. Ostrowski (1952):Note on bounds for determinants with dominant principal diagonal. Proc. Amer. Math. Soc.,3:26–30.

  13. 13.

    E. B. Saff (1983):Incomplete and orthogonal polynomials. In: Approximation Theory IV. (C. K. Chui, L. L. Schumaker, J. D. Ward, eds.) New York: Academic Press, pp. 219–256.

  14. 14.

    R. S. Varga (1976):On recurring theorems on diagonal dominance. Lin. Alg. and Appl.,13:1-9.

  15. 15.

    H. Wallin (1982):Interpolation by rational functions with free poles in the complex plane. In: Proceedings of the Conference on Recent Trends in Mathematics, Reinhardsbrunn. Leipzig: Teubner, pp. 303–315 (Teubner-Texte zur Math., vol. 50).

Download references

Author information

Additional information

Communicated by Edward B. Saff.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lubinsky, D.S. Padé tables of entire functions of very slow and smooth growth. Constr. Approx 1, 349–358 (1985). https://doi.org/10.1007/BF01890041

Download citation

AMS (MOS) classification

  • Primary
  • 41A21
  • Secondary
  • 30E05
  • 30E10

Key words ana phrases

  • Padé table
  • Uniform convergence
  • Entire functions of slow growth
  • Diagonally
  • dominant matrices