Foundations of Physics

, Volume 16, Issue 7, pp 593–617 | Cite as

p-Form electrodynamics

  • Marc Henneaux
  • Claudio Teitelboim
Part VI. Invited Papers Dedicated To John Archibald Wheeler

Abstract

A generalization of gauge theory in which the gauge potential1-form is replaced by a p-form is studied. Charged particles are then replaced by elementary extended objects of dimension p−1. It is shown that this extension is compatible with space-time locality only if the gauge group is U(1). A source which is a closed p−1 surface has zero total charge and corresponds to a particle-antiparticle pair. Its quantum rate of production in an external uniform field is evaluated semiclassically. The analog of the Dirac magnetic pole is constructed. It is another extended object, of dimension n−p−3, where n is the dimension of space-time. The “electric” and “magnetic” charges obey the Dirac quantization condition. This condition is derived in two different ways. One method makes use of local gauge patches and the other brings in singular gauge transformations. A topological mass term is introduced and it is shown that it can coexist with a magnetic pole when n=2p+1, provided the topological mass is quantized.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Teitelboim,Phys. Lett. B 167, 63 (1986).CrossRefGoogle Scholar
  2. 2.
    V. I. Ogievetsky and I. V. Polubarinov,Sov. J. Nucl. Phys. (Yadernaya Fizika) 4, 210 (1968) (in Russian); P. Townsend, K. Pilch and P. van Nieuwenhuizen,Phys. Lett. B 139, 38 (1984); E. Cremmer, B. Julia, and J. Scherk,Phys. Lett. B 76, 409 (1978); D. Z. Freedman and P. K. Townsend,Nucl. Phys. B 177, 282 (1981); J. Thierry-Mieg and Y. Ne'eman,Proc. Natl. Acad. Sci. USA 79, 7068 (1982); E. Cremmer and J. Scherk,Nucl. Phys. B 72, 117 (1974); M. Kalb and P. Ramond,Phys. Rev. D 9, 2273 (1974); Y. Nambu,Phys. Rep. 23, 250 (1976); T. Curtright and P. G. O. Freund,Nucl. Phys. B 172, 431 (1980); J. Schwarz and P. C. West,Phys. Lett. B 126, 301 (1983); P. A. Marchetti and R. Percacci,Lett. Math. Phys. 6, 405 (1982).Google Scholar
  3. 3.
    C. Teitelboim,Ann. Phys. (N.Y.) 79, 542 (1973).CrossRefGoogle Scholar
  4. 4.
    T. Regge and C. Teitelboim, inProceedings of the First Marcel Grossmann on General Relativity, R. Ruffini, ed. (North-Holland, Amsterdam), p. 77.Google Scholar
  5. 5.
    S. Coleman,Phys. Rev. D 15, 2929 (1977); A. Vilenkin,Phys. Rev. D 27, 2848 (1983).CrossRefGoogle Scholar
  6. 6.
    C. Teitelboim,Phys. Lett. B 167, 69 (1986).CrossRefGoogle Scholar
  7. 7.
    G. 't Hooft,Nucl. Phys. B 79, 276 (1974); A. M. Polyakov,JETP Lett. 20, 194 (1974).CrossRefGoogle Scholar
  8. 8.
    P. A. M. Dirac,Phys. Rev. 74, 817 (1948).CrossRefGoogle Scholar
  9. 9.
    T. T. Wu and C. N. Yang,Phys. Rev. D 12, 3845 (1975); O. Alvarez,Comm. Math. Phys. 100, 279 (1985).CrossRefGoogle Scholar
  10. 10.
    Y. Aharonov and D. Bohm,Phys. Rev. 115, 485 (1959).CrossRefGoogle Scholar
  11. 11.
    H. Flanders,Differential Forms (Academic Press, New York), Chap. 6.Google Scholar
  12. 12.
    S. Coleman, inLe monopôle magnétique cinquante ans après R. Stora, ed.,Les Houches 1981 (North-Holland, Amsterdam).Google Scholar
  13. 13.
    T. T. Wu and C. N. Yang,Nucl. Phys. B 107, 365 (1976).CrossRefGoogle Scholar
  14. 14.
    P. Goddard and D. Olive,Rep. Prog. Phys. 41, 1357 (1978).CrossRefGoogle Scholar
  15. 15.
    W. Siegel,Nucl. Phys. B 156, 135 (1979); J. Schonfeld,Nucl. Phys. B 185, 157 (1981); R. Jackiw and S. Templeton,Phys. Rev. D 23, 2291 (1981); S. Deser, R. Jackiw, and S. Templeton,Phys. Rev. Lett. 48, 975 (1982);Ann. Phys. (N.Y.) 140, 372 (1982); R. Jackiw, inLes Houches 1983 (North-Holland, Amsterdam); C. Aragone,Phys. Lett. B 131, 69 (1983).CrossRefGoogle Scholar
  16. 16.
    M. Henneaux and C. Teitelboim,Phys. Rev. Lett. 56, 689 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Marc Henneaux
    • 1
    • 2
  • Claudio Teitelboim
    • 2
    • 3
  1. 1.Faculté des SciencesUniversité Libre de BruxellesBruxellesBelgium
  2. 2.Centro de Estudios Cientificos de SantiagoSantiago 9Chile
  3. 3.Center for Theoretical PhysicsThe University of Texas at AustinAustin

Personalised recommendations