Constructive Approximation

, Volume 5, Issue 1, pp 33–48

Hölder exponents and box dimension for self-affine fractal functions

  • Tim Bedford
Article
  • 176 Downloads

Abstract

We consider some self-affine fractal functions previously studied by Barnsleyet al. The graphs of these functions are invariant under certain affine scalings, and we extend their definition to allow the use of nonlinear scalings. The Hölder exponent,h, for these fractal functions is calculated and we show that there is a larger Hölder exponent,hλ, defined at almost every point (with respect to Lebesgue measure). For a class of such functions defined using linear affinities these exponents are related to the box dimensionDB of the graph byh≤2−DBhλ.

AMS classification

26A30 41A30 58F11 

Key words and phrases

Fractals Self-affine Hölder exponents Box dimension Gibbs measures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ba]
    M. F. Barnsley (1985): Fractal Functions and Interpolation. Atlanta: Georgia Institute of Technology Preprints.Google Scholar
  2. [BH]
    M. F. Barnsley, A. N. Harrington (1985): The Calculus of Fractal Interpolation Functions. Atlanta: Georgia Institute of Technology Preprints.Google Scholar
  3. [Be]
    T. J. Bedford (1986):Dimension and dynamics for fractal recurrent sets. J. London Math. Soc. (2),33:89–100.Google Scholar
  4. [BU]
    A. S. Besicovitch, H. D. Ursell (1937):Sets of fractional dimensions, V: On dimensional numbers of some continuous curves. J. London Math. Soc.,12:18–25.Google Scholar
  5. [Bo1]
    R. Bowen (1975): Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, Vol. 470. Berlin: Springer-Verlag.Google Scholar
  6. [Bo2]
    R. Bowen (1979): Hausdorff Dimension of Quasi-Circles. Publications Mathématiques, Vol. 50. Paris: Institut des Hautes Etudes Scientifiques, pp. 11–25.Google Scholar
  7. [Ca]
    H. Cajar (1981): Billingsley Dimension in Probability Spaces. Lecture Notes in Mathematics, Vol. 892. Berlin: Springer-Verlag.Google Scholar
  8. [FHY]
    A. Fathi, M. R. Herman, J. C. Yoccoz (1981):A proof of Pesin's stable manifold theorem. In: Geometric Dynamics (J. Palis Jr., ed.). Lecture Notes in Mathematics, Vol. 1007. Berlin, Springer-Verlag.Google Scholar
  9. [Ha]
    D. P.Hardin (1986): Personal communication.Google Scholar
  10. [HM]
    D. P. Hardin, P. R. Massopust (1986):The capacity for a class of functions. Comm. Math. Phys.,105:455–460.Google Scholar
  11. [Hu]
    J. E. Hutchinson (1981):Fractals and self-similarity. Indiana Univ. Math. J.,30:713–747.Google Scholar
  12. [Tr]
    C.Tricot:Two definitions of fractional dimension. Math. Proc. Cambridge Philos. Soc.,91:57–74.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1989

Authors and Affiliations

  • Tim Bedford
    • 1
  1. 1.King's College Research CentreKing's CollegeCambridgeEngland
  2. 2.Department of Mathematics and InformaticsDelft University of TechnologyDelftThe Netherlands

Personalised recommendations