Foundations of Physics

, Volume 17, Issue 7, pp 723–738 | Cite as

Evolutionary drive: The effect of microscopic diversity, error making, and noise

  • P. M. Allen
  • J. M. McGlade
Part III. Invited Papers Dedicated to Ilya Prigogine


In order to model any macroscopic system, it is necessary to aggregate both spatially and taxonomically. If average processes are assumed, then kinetic equations of “population dynamics” can be derived. Much effort has gone into showing the important effects introduced by non-average effects (fluctuations) in generating symmetry-breaking transitions and creating structure and form. However, the effects of microscopic diversity have been largely neglected. We show that evolution will select for populations which retain “variability,” even though this is, at any given time, loss-making, predicting that we shall not observe populations with “optimal behavior,” but populations which can “learn.” This lesser short-term efficiency may be why natural diversity is so great. Evolution is seen to be “driven” by the noise to which it leads.


Population Dynamic Kinetic Equation Natural Diversity Average Process Optimal Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Nicolis and I. Prigogine,Self-Organization in Non-Equilibrium Systems (Wiley-Interscience, New York, 1977).Google Scholar
  2. 2.
    I. Prigogine and P. M. Allen, “The challenge of complexity,” inSelf-Organization and Dissipative Structures (University of Texas Press, Austin, Texas, 1982).Google Scholar
  3. 3.
    H. Haken,Synergetics: An Introduction (Springer Series on Synergetics, Vol. 1) (Springer, New York, 1977).Google Scholar
  4. 4.
    C. Darwin,The Origin of Species (John Murray, London, 1859).Google Scholar
  5. 5.
    R. A. Fisher,The Genetical Theory of Natural Selection (Dover, New York, 1958).Google Scholar
  6. 6.
    S. Wright,Evolution and the Genetics of Populations, Volumes I, II, III, and IV (University of Chicago Press, 1968, 1969, 1977, 1973).Google Scholar
  7. 7.
    E. B. Ford,Ecological Genetics (Methuen, London, 1964).Google Scholar
  8. 8.
    E. Mayr,The Growth of Biological Thought: Diversity, Evolution and Inheritance (Harvard University Press, Cambridge, 1982).Google Scholar
  9. 9.
    R. Dawkins,The Selfish Gene (Oxford University Press, Oxford, 1980).Google Scholar
  10. 10.
    N. Eldredge and S. J. Gould, inModels in Palaeobiology, T. Schopf, ed. (Freeman, San Francisco, 1972).Google Scholar
  11. 11.
    J. Maynard Smith,Evolution and the Theory of Games (Cambridge University Press, Cambridge, 1982).Google Scholar
  12. 12.
    R. M. May,Stability and Complexity in Model Ecosystems (Princeton University Press, Princeton, 1973).Google Scholar
  13. 13.
    V. C. Wynne-Edwards,Animal Dispersion in Relation to Social Behaviour (Oliver and Boyd, Edinburgh, 1962).Google Scholar
  14. 14.
    V. C. Wynne-Edwards,Evolution through Group Selection (Blackwell Scientific Publications, Oxford, 1986).Google Scholar
  15. 15.
    D. S. Wilson,The Natural Selection of Populations and Communities (Benjamin/Cummings, Menlo Park, California, 1980).Google Scholar
  16. 16.
    L. E. Orgel and F. Crick,Nature (London) 286, 604–607 (1980).CrossRefGoogle Scholar
  17. 17.
    W. F. Doolittle and C. Sapienza,Nature (London) 284, 601–603 (1980).Google Scholar
  18. 18.
    G. Dover,Nature (London) 299, 111–117 (1982).Google Scholar
  19. 19.
    L. Van Valen,Evolutionary Theory,1, 1–30 (1973).Google Scholar
  20. 20.
    J. Roughgarden,The Theory of Population Genetics and Evolutionary Ecology: An Introduction (Macmillan, New York, 1979).Google Scholar
  21. 21.
    G. H. Waddington,Mathematical Challenges to the Neo-Darwinian Interpretation of Evolution, P. S. Moorehead and M. M. Kaplan, eds. (Wistar Institute Press, Philadelphia, 1967), pp. 113–115.Google Scholar
  22. 22.
    E. Jantsch,The Self-Organizing Universe (Pergamon Press, New York, 1980).Google Scholar
  23. 23.
    M. Conrad,Adaptability: The Significance of Variability from Molecule to Ecosystem (Plenum Press, New York, 1983).Google Scholar
  24. 24.
    M. Eigen and P. Schuster,The Hypercycle (Springer, Berlin, 1979).Google Scholar
  25. 25.
    R. Dawkins,The Blind Watchmaker (Longman, Harlow, England, 1986).Google Scholar
  26. 26.
    W. M. Post and S. L. Pimm, “Community assembly and food web stability,”Math. Biosc. 64, 169–192 (1983).Google Scholar
  27. 27.
    W. Ebeling and A. Engel,Syst. Anal. Model Simul. 3 (5), 377–385 (1986).Google Scholar
  28. 28.
    P. M. Allen and J. McGlade,Can. J. Fish. Aquat. Sci. 43, 1187–1200 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • P. M. Allen
    • 1
  • J. M. McGlade
    • 2
  1. 1.Free University of BrusselsBrusselsBelgium
  2. 2.Bedford Institute of OceanographyDartmouthCanada

Personalised recommendations