Advertisement

Foundations of Physics

, Volume 20, Issue 10, pp 1213–1232 | Cite as

The zitterbewegung interpretation of quantum mechanics

  • David Hestenes
Part I. Invited Papers Dedicated To John Stewart Bell

Abstract

Thezitterbewegung is a local circulatory motion of the electron presumed to be the basis of the electron spin and magnetic moment. A reformulation of the Dirac theory shows that thezitterbewegung need not be attributed to interference between positive and negative energy states as originally proposed by Schroedinger. Rather, it provides a physical interpretation for the complex phase factor in the Dirac wave function generally. Moreover, it extends to a coherent physical interpretation of the entire Dirac theory, and it implies azitterbewegung interpretation for the Schroedinger theory as well.

Keywords

Wave Function Quantum Mechanic Energy State Electron Spin Physical Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Schroedinger,Sitzungber. Preuss. Akad. Wiss. Phys.-Math. Kl. 24, 418 (1930).Google Scholar
  2. 2.
    Huang, “On thezitterbewegung of the electron,”Am. J. Phys. 47, 797 (1949).Google Scholar
  3. 3.
    A. O. Barut and A. J. Bracken, “Zitterbewegung and the internal geometry of the electron,”Phys. Rev. D 23, 2454 (1981).Google Scholar
  4. 4.
    H. Thirring,Principles of Quantum Electrodynamics (Academic Press, New York, 1958).Google Scholar
  5. 5.
    D. Hestenes,Space-Time Algebra (Gordon & Breach, London, 1966).Google Scholar
  6. 6.
    D. Hestenes, “Real spinor fields,”J. Math. Phys. 8, 798–808 (1967).Google Scholar
  7. 7.
    D. Hestenes, “Local observables in the Dirac theory,”J. Math. Phys. 14, 893–905 (1973).Google Scholar
  8. 8.
    D. Hestenes, “Observables, operators and complex numbers in the Dirac theory,”J. Math. Phys. 16, 556–572 (1975).Google Scholar
  9. 9.
    R. Gurtler and D. Hestenes, “Consistency in the formulation of the Dirac, Pauli, and Schroedinger theories,”J. Math. Phys. 16, 573–583 (1975).Google Scholar
  10. 10.
    D. Hestenes, “Spin and uncertainty in the interpretation of quantum mechanics,”Am. J. Phys. 47, 339–415 (1979).Google Scholar
  11. 11.
    D. Hestenes, “Clifford algebra and the interpretation of quantum mechanics,” inClifford Algebras and Their Applications in Mathematical Physics, J. S. R. Chisholm and A. K. Common, eds. (Reidel, Dordrecht, 1986), p. 321–346.Google Scholar
  12. 12.
    D. Hestenes, “Quantum mechanics from self-interaction,”Found. Phys. 15, 63–87 (1985).Google Scholar
  13. 13.
    D. Bohm and B. Hiley, “Unbroken quantum realism, from microscopic to macroscopic levels,”Phys. Rev. Lett. 55, 2511 (1985).Google Scholar
  14. 14.
    J.-P. Vigier, C. Dewney, P. R. Holland, and A. Kypriandis, “Causal particle trajectories and the interpretation of quantum mechanics,” inQuantum Implications, B. J. Hiley and F. D. Peat, eds. (Routledge & Kegan Paul, London, 1987).Google Scholar
  15. 15.
    D. Benderet al., “Tests of QED at 29 GeV center-of-mass energy,”Phys. Rev. D 30, 515 (1984).Google Scholar
  16. 16.
    D. Hestenes, “Proper particle mechanics,”J. Math. Phys. 15, 1768–1777 (1974).Google Scholar
  17. 17.
    D. Hestenes, “Proper dynamics of a rigid point particle,”J. Math. Phys. 15, 1778–1786 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • David Hestenes
    • 1
  1. 1.Department of PhysicsArizona State UniversityTempe

Personalised recommendations