Foundations of Physics

, Volume 20, Issue 6, pp 651–665 | Cite as

Lattice theory, quadratic spaces, and quantum proposition systems

  • Robert Piziak
Part II. Invited Papers Dedicated To The Memory Of Charles H. Randall (1928–1987)

Abstract

A quadratic space is a generalization of a Hilbert space. The geometry of certain kinds of subspaces (“closed,” “splitting,” etc.) is approached from the purely lattice theoretic point of view. In particular, theorems of Mackey and Kaplansky are given purely lattice theoretic proofs. Under certain conditions, the lattice of “closed” elements is a quantum proposition system (i.e., a complete orthomodular atomistic lattice with the covering property).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Piron,Foundations of Quantum Physics (Benjamin, Reading, Massachusetts 1976).Google Scholar
  2. 2.
    W. J. Wilbur, “On characterizing the standard quantum logics,”Trans. Am. Math. Soc. 233, 265–282 (1977).Google Scholar
  3. 3.
    H. A. Keller, “Ein nicht-klassicher Hilbertsher Raum,”Math. Z. 172, 41–49 (1980).Google Scholar
  4. 4.
    V. S. Varadarajan,Geometry of Quantum Theory, Vol. 1 (Van Nostrand, New York, 1968).Google Scholar
  5. 5.
    G. D. Birkhoff,Lattice Theory, 3rd edn. (American Mathematical Society, Providence, 1967).Google Scholar
  6. 6.
    O. T. O'Meara,Introduction to Quadratic Forms (Springer New York, 1963).Google Scholar
  7. 7.
    H. Gross,Quadratic forms in Infinite-Dimensional Vector Spaces (Progress in Mathematics, Vol. 1) (Birkhäuser, Boston, 1979).Google Scholar
  8. 8.
    G. W. Mackey,Mathematical Foundations of Quantum Mechanics (Benjamin, New York, 1963).Google Scholar
  9. 9.
    R. Piziak, “Orthomodular posets from sesquilinear forms,”J. Aust. Math. Soc. XV(3), 265–269 (1973).Google Scholar
  10. 10.
    H. Gross and H. A. Keller, “On the definition of Hilbert space,”Manuscr. Math. 23, 67–90 (1977).Google Scholar
  11. 11.
    R. Piziak, “Mackey closure operators,”J. London Math. Soc. 4(2), 33–38 (1971).Google Scholar
  12. 12.
    F. Maeda and S. Maeda,Theory of Symmetric Lattices (Springer, New York, 1970).Google Scholar
  13. 13.
    I. Kaplansky, “Forms in infinite-dimensional spaces,An. Acad. Bras. Ciencias 22, 1–17 (1950).Google Scholar
  14. 14.
    H. A. Keller, “On the lattice of all closed subspaces of a Hermitian space,”Pacific J. Math. 89(1), 105–110 (1980).Google Scholar
  15. 15.
    I. Kaplansky, “Any orthocomplemented complete modular lattice is a continuous geometry,”Ann. Math. 61(3), 524–541 (1955).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Robert Piziak
    • 1
  1. 1.Department of MathematicsBaylor UniversityWaco

Personalised recommendations