Foundations of Physics

, Volume 13, Issue 1, pp 13–34 | Cite as

The “Sommerfeld Puzzle” revisited and resolved

  • L. C. Biedenharn
Invited Papers Dedicated to Eugene Paul Wigner


The exact agreement between the Sommerfeld and Dirac results for the energy levels of the relativistic hydrogen atom (the “Sommerfeld Puzzle”) is analyzed and explained.


Hydrogen Energy Level Hydrogen Atom Exact Agreement Relativistic Hydrogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. W. Sommerfeld,Ann. d. Physik 50, 1 (1916).Google Scholar
  2. 2.
    C. G. Darwin,Proc. Roy. Soc. 118, 654 (1928); W. Gordon,Z. f. Physik 48, 11 (1928).Google Scholar
  3. 3.
    W. Yourgrau and S. Mandelstam,Variational Principles in Dynamics and Quantum Theory (W. B. Saunders Co., Philadelphia, 1968), 3rd ed.Google Scholar
  4. 4.
    Letter to Yourgrau-Mandelstam, dated 29/II/56 and quoted, loc. cit. ref. (3), p. 113 ff. The italics are in the original.Google Scholar
  5. 5.
    Loc. cit. (Ref. 3 ), p. 115.Google Scholar
  6. 6.
    Oxford English Dictionary (Oxford Univ. Press, 1971).Google Scholar
  7. 7.
    Loc. cit. p. 14.Google Scholar
  8. 8.
    A. Sommerfeld,Sitzungsberichte der Münchener Akademie, Dec. 1915; Jan. 1916.Google Scholar
  9. 9.
    W. Wilson,Phil. Mag. 31, 161 (1916).Google Scholar
  10. 10.
    A. Sommerfeld,Atombau und Spektrallinien (Vieweg, Braunschweig, 1929), 5th ed. Only the third edition of this work (translated by H. L. Brose),Atomic Structure and Spectral Lines (Methuen, London, 1923) contains the geometric approach. See pp. 467–475.Google Scholar
  11. 11.
    L. C. Biedenharn and P. J. Brussaard,Coulomb Excitation (Clarendon Press, Oxford, 1965).Google Scholar
  12. 12.
    A. O. Barut,Dynamical Groups and Generalized Symmetries in Quantum Theory, Univ. of Canterbury (Christchurch, NZ, 1971).Google Scholar
  13. 13.
    E. P. Wigner,Group Theory and the Special Functions of Mathematical Physics, Lecture Notes, Princeton, 1955 (unpublished).Google Scholar
  14. 14.
    H. Bacry and J. L. Richard,J. Math. Phys. 8, 2230 (1967).Google Scholar
  15. 15.
    P. A. M. Dirac,Principles of Quantum Mechanics (Clarendon Press, Oxford, 1947).Google Scholar
  16. 16.
    L. C. Biedenharn,Phys. Rev. 126, 845 (1961).Google Scholar
  17. 17.
    G. Temple,The General Principles of Quantum Mechanics (Methuen and Co., New York, 1948). See also remarks added in proof, Ref. 20.Google Scholar
  18. 18.
    M. H. Johnson and B. A. Lippmann,Phys. Rev. 78, 329 (1950).Google Scholar
  19. 19.
    E. P. Wigner,Rev. Mod. Phys. 29, 255 (1957).Google Scholar
  20. 20.
    L. C. Biedenharn and N. V. V. J. Swamy,Phys. Rev. 133, B1353 (1964).Google Scholar
  21. 21.
    I. A. Malkin and V. I. Manko,Zh. Ekps. Teor. Fiz. 55, 287 (1968).Google Scholar
  22. 22.
    L. C. Biedenharn, M. Y. Han, and H. van Dam,Phys. Rev. D6, 500 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • L. C. Biedenharn
    • 1
  1. 1.Physics DepartmentDuke UniversityDurham

Personalised recommendations