Advertisement

Foundations of Physics

, Volume 18, Issue 8, pp 777–808 | Cite as

Projective spinor geometry and prespace

  • F. A. M. Frescura
Part II. Invited Papers Dedicated To David Bohm
  • 79 Downloads

Abstract

A method originally conceived by Bohm for abstracting key features of the metric geometry from an underlying spinor ordering is generalized to the projective geometry. This allows the introduction of the spinor into a projective context and the definition of an associated geometric algebra. The projective spinor may then be regarded as defining a pregeometry for the projective space.

Keywords

Projective Space Projective Geometry Projective Spinor Geometric Algebra Spinor Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bohm,Found. Phys. 1, 359 (1971).Google Scholar
  2. 2.
    D. Bohm,Found. Phys. 3, 139 (1973).Google Scholar
  3. 3.
    D. Bohm,Found. Phys. 4, 139 (1973).Google Scholar
  4. 4.
    D. Bohm,Wholeness and the Implicate Order (Routledge and Kegan Paul, London, 1980).Google Scholar
  5. 5.
    D. Bohm, “Space-time geometry as an abstraction from Spinor Ordering,” inPerspective in Quantum Theory, W. Yourgrau and A. van der Merwe, eds. (M.I.T. Press, Cambridge, Massachusetts, 1971), Chap. 7.Google Scholar
  6. 6.
    D. Bohm and B. Hiley, “Generalization of twistor to Clifford algebra as a basis for geometry,” preprint.Google Scholar
  7. 7.
    D. Bohm and B. Hiley, “Relativistic phase space arising out of the Dirac algebra,” inOld and New Questions in Physics, Cosmology, Philosophy, and Theoretical Biology, A. van der Merwe, ed. (Plenum, New York, 1983).Google Scholar
  8. 8.
    D. Bohm and B. Hiley,Rev. Bras. De Fisica, Volume Especial, July 1984, pp. 1–26.Google Scholar
  9. 9.
    R. Penrose, “On the nature of quantum geometry,” inMagic without Magic, J. R. Klauder, ed. (Freeman, San Francisco, 1972).Google Scholar
  10. 10.
    R. Penrose, inQuantum Theory and Beyond, T. Bastin, ed. (Cambridge University Press, Cambridge, 1971).Google Scholar
  11. 11.
    F. A. M. Frescura and B. J. Hiley,Found. Phys. 10, 7 (1980).CrossRefGoogle Scholar
  12. 12.
    F. A. M. Frescura and B. J. Hiley,Found. Phys. 10, 705 (1980).Google Scholar
  13. 13.
    F. A. M. Frescura and B. J. Hiley,Am. J. Phys. 49, 152 (1981).Google Scholar
  14. 14.
    E. Cartan,The Theory of Spinors (M.I.T. Press, Cambridge, Massachusetts, 1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • F. A. M. Frescura
    • 1
  1. 1.Department of Physics and ElectronicsRhodes UniversityGrahamstownSouth Africa

Personalised recommendations