Foundations of Physics

, Volume 19, Issue 7, pp 905–922

Coupled physical systems

  • David J. Foulis
Part I. Invited Papers Dedicated To Peter Mittelstaedt

Abstract

The purpose of this paper is to sketch an attack on the general problem of representing a composite physical system in terms of its constituent parts. For quantum-mechanical systems, this is traditionally accomplished by forming either direct sums or tensor products of the Hilbert spaces corresponding to the component systems. Here, a more general mathematical construction is given which includes the standard quantum-mechanical formalism as a special case.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Beltrametti and G. Cassinelli,The Logic of Quantum Mechanics (Encyclopeada of Mathematics and its Applications, Vol. 15, Gian-Carlo Rota, ed., Addison-Wesley, Reading, Massachusetts, 1981).Google Scholar
  2. 2.
    J. Dacey,Orthomodular Spaces, Ph.D. Thesis, University of Massachusetts, Amherst, 1968.Google Scholar
  3. 3.
    D. Foulis and C. Randall, “Empirical logic and tensor products,” inInterpretations and Foundations of Quantum Theory, H. Neumann, ed. (Bibliographisches Institut Mannheim, Wien, 1981).Google Scholar
  4. 4.
    D. Foulis and C. Randall, “What are quantum logics and what ought they to be?,” inCurrent Issues in Quantum Logic, E. Beltrametti and B. van Fraassen, eds. (Ettore Majorana International Science Series, 8) (Plenum, New York, 1981).Google Scholar
  5. 5.
    A. Gleason, “Measures on closed subspaces of a Hilbert space,”J. Math. Mech. 6, 885–893 (1957).Google Scholar
  6. 6.
    A. Golfin,Representations and Products of Lattices, Ph.D. Thesis, University of Massachusetts, Amherst, 1987.Google Scholar
  7. 7.
    R. Greechie and S. Gudder, “Quantum logics,” inThe Logico-Algebraic Approach to Quantum Mechanics, Vol. I:Historical Evolution, C. A. Hooker, ed. (Reidel, Dordrecht, 1975).Google Scholar
  8. 8.
    S. Gudder,Quantum Probability (Academic Press, San Diego, 1988).Google Scholar
  9. 9.
    G. Hardegree and P. Frazer, “Charting the labyrinth of quantum logics,” inCurrent Issues in Quantum Logic, E. Beltrametti and B. van Fraassen, eds. (Ettore Majorana International Science Series, 8) (Plenum, New York, 1981).Google Scholar
  10. 10.
    M. Janowitz, “The near center of an orthomodular lattice,”J. Aust. Math. Soc. 14, Part 1, 20–29 (1972).Google Scholar
  11. 11.
    G. Kalmbach,Orthomodular Lattices (Academic Press, New York, 1983).Google Scholar
  12. 12.
    M. Kläy,Stochastic Models on Empirical Systems, Empirical Logics and Quantum Logics, and States on Hypergraphs, Ph.D. Thesis, University of Bern, Switzerland, 1985.Google Scholar
  13. 13.
    M. Kläy, C. Randall, and D. Foulis, “Tensor products and probability weights,”Int. J. Theor. Phys. 26(3), 199–219 (1987).Google Scholar
  14. 14.
    P. Lock and G. Hardegree, “Connections among quantum logics, Part 1: Quantum propositional logics,”Int. J. Theor. Phys. 24(1), 43–53 (1984).Google Scholar
  15. 15.
    P. Lock and G. Hardegree, “Connections among quantum logics, Part 2: Quantum event logics,”Int. J. Theor. Phys. 24(1), 55–61 (1984).Google Scholar
  16. 16.
    R. Lock,Constructing the Tensor Product of Generalized Sample Spaces, Ph.D. Thesis, University of Massachusetts, Amherst, 1981.Google Scholar
  17. 17.
    P. Mittelstaedt,Philosophical Problems of Modern Physics (Reidel, Dordrecht, 1976).Google Scholar
  18. 18.
    P. Mittelstaedt,Quantum Logic (Reidel, Dordrecht, 1978).Google Scholar
  19. 19.
    P. Mittelstaedt, “The concepts of truth, possibility, and probability in the language of quantum physics,” inInterpretations and Foundations of Quantum Theory, H. Neumann, ed. (Bibliographisches Institut Mannheim, Wien, 1981).Google Scholar
  20. 20.
    C. Piron,Foundations of Quantum Physics (Mathematical Physics Monograph Series), A. Wightman, ed. (Benjamin, Reading, Massachusetts, 1976).Google Scholar
  21. 21.
    S. Pulmannová, “Tensor product of quantum logics,”J. Math. Phys. 26(1), 1–5 (1985).Google Scholar
  22. 22.
    C. Randall and D. Foulis, “Tensor products of quantum logics do not exist,”Not. Am. Math. Soc. 26(6), A-557 (1979).Google Scholar
  23. 23.
    C. Randall and D. Foulis, “Operational statistics and tensor products,” inInterpretations and Foundations of Quantum Theory, H. Neumann, ed. (Bibliographisches Institut Mannheim, Wien, 1981).Google Scholar
  24. 24.
    R. Streater and A. Wightman,PCT, Spin and Statistics, and All That (Mathematical Physics Monograph Series), A. S. Wightman, ed. (Benjamin, Reading, Massachusetts, 1964).Google Scholar
  25. 25.
    R. Wright, “Spin manuals,” inMathematical Foundations of Quantum Theory, A. R. Marlow, ed. (Academic Press, New York, 1978).Google Scholar
  26. 26.
    M. Younce,Random Variables on Non-Boolean Structures, Ph.D. Thesis, University of Massachusetts, Amherst, 1987.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • David J. Foulis
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of MassachusettsAmherst

Personalised recommendations