Advertisement

Foundations of Physics

, Volume 12, Issue 10, pp 1001–1016 | Cite as

The de Broglie pilot wave theory and the further development of new insights arising out of it

  • D. J. Bohm
  • B. J. Hiley
Part I. Invited Papers Dedicated to Louis De Broglie

Abstract

We briefly review the history of de Broglie's notion of the “double solution” and of the ideas which developed from this. We then go on to an extension of these ideas to the many-body system, and bring out the nonlocality implied in such an extension. Finally, we summarize further developments that have stemmed from de Broglie's suggestions.

Keywords

Wave Theory Pilot Wave Pilot Wave Theory Double Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Bohr,Atomic Physics and Human Knowledge (Science Editions, New York, 1961).Google Scholar
  2. 2.
    L. de Broglie,Une interpretation causale et non linéaire de la méchanique ondulatoire: la théorie de la double solution (Gauthier-Villars, Paris, 1956). [English translation: Elsevier, Amsterdam, 1960].Google Scholar
  3. 2a.
    L. de Broglie,Found. Phys. 1, 5 (1970).Google Scholar
  4. 3.
    W. Pauli, inRapport au V'ieme Congres de Physique Solvay (Gauthier-Villars, Paris, 1927).Google Scholar
  5. 4.
    D. Bohm,Phys. Rev. 85, 166 (1952).Google Scholar
  6. 5.
    D. Bohm,Phys. Rev. 85, 180 (1952).Google Scholar
  7. 6.
    D. Bohm and J. P. Vigier,Phys. Rev. 96, 208 (1954).Google Scholar
  8. 7.
    J.-P. Vigier, Nonlocality, Causality and Aether in Quantum Mechanics, presented at the Michelson Colloquium, Berlin (1981).Google Scholar
  9. 8.
    E. Nelson,Phys. Rev. 150, 1079 (1966);Dynamical Theories of Brownian Motion (Princeton Univ. Press, Princeton, 1967).Google Scholar
  10. 9.
    L. de la Pena,J. Math. Phys. 10, 1620 (1969).Google Scholar
  11. 10.
    S. Roy,J. Mazth. Phys. 21, 71 (1980).Google Scholar
  12. 11.
    C. Philippidis, C. Dewdney, and B. J. Hiley,Nuovo Cimento 52B, 15 (1979).Google Scholar
  13. 12.
    D. Bohm and B. J. Hiley,Found. Phys. 5, 93 (1975).Google Scholar
  14. 13.
    A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).Google Scholar
  15. 14.
    N. Bohr,Phys. Rev. 48, 696 (1935).Google Scholar
  16. 15.
    J. S. Bell, TH. 1424-CERN 24 October, 1971.Google Scholar
  17. 16.
    D. Bohm,Wholeness and the Implicate Order (Routledge and Kegan Paul, London, 1980).Google Scholar
  18. 17.
    E. Madelung,Z. Physik 40, 332 (1926).Google Scholar
  19. 18.
    N. Cufaro Petroni, Ph. Droz-Vincent, and J.-P. Vigier,Lett. Nuovo Cimento 31, 415 (1981).Google Scholar
  20. 19.
    D. Bohm and B. J. Hiley,Found. Phys. 11, 529 (1981).Google Scholar
  21. 20.
    D. Bohm,Quantum Theory, Radiation and High Energy Physics, D. R. Bates, ed. (Academic Press, New York, 1962).Google Scholar
  22. 21.
    J. A. Wheeler,Quantum Theory and Gravitation, (Academic Press, New York, 1980).Google Scholar
  23. 22.
    Ne'eman,Some Strangeness in the Proportion, H. Woolf, ed. (Addison-Wesley, Reading, Massachusetts, 1980).Google Scholar
  24. 23.
    D. Bohm,Quantum Mechanics (Prentice-Hall, London, 1960).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • D. J. Bohm
    • 1
  • B. J. Hiley
    • 1
  1. 1.Birkbeck College (University of London)London

Personalised recommendations