Advertisement

Foundations of Physics

, Volume 14, Issue 10, pp 925–951 | Cite as

Electrodynamics at spatial infinity

  • Matthew Alexander
  • Peter G. Bergmann
Part I. Invited Papers Dedicated To Nathan Rosen

Abstract

In preparation for the treatment of the gravitational field at spatial infinity, this paper deals with the electromagnetic field at spatial infinity. The field equations on this three-dimensional(1+2) manifold can be obtained from an action principle, which in turn lends itself to a Hamiltonian formulation. Quantization is formally straightforward, but some thought is given to the physical interpretation of the results.

Keywords

Manifold Electromagnetic Field Field Equation Gravitational Field Physical Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ashtekar,Phys. Rev. Lett. 46, 573 (1981).Google Scholar
  2. 2.
    A. Ashtekar and M. Streubel,Proc. R. Soc. London Ser. A 376, 585 (1981).Google Scholar
  3. 3.
    P. Sommers,J. Math. Phys. 19, 549 (1978).Google Scholar
  4. 4.
    R. Penrose,Phys. Rev. Lett. 10, 66 (1963).Google Scholar
  5. 5.
    R. Geroch,J. Math. Phys. 13, 956 (1972).Google Scholar
  6. 6.
    A. Ashtekar and R. Hansen,J. Math. Phys. 19, 1542 (1978).Google Scholar
  7. 7.
    R. Beig and B. G. Schmidt, “Einstein's Equations Near Spatial Infinity,” Preprint MPA2, Max-Planck-Institut für Physik und Astrophysik, Garching bei München (1982).Google Scholar
  8. 8.
    P. G. Bergmann,Introduction to the Theory of Relativity (Dover, New York, 1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Matthew Alexander
    • 1
  • Peter G. Bergmann
    • 2
    • 3
  1. 1.Department of MathematicsFordham UniversityBronx
  2. 2.Department of PhysicsSyracuse UniversitySyracuse
  3. 3.Department of PhysicsNew York UniversityNew York

Personalised recommendations