The Visual Computer

, Volume 9, Issue 8, pp 425–438

Interactive volume rendering of large fields

  • Georgios Sakas
Article

Abstract

We first present the volume-rendering pipeline and the most typical of the existing methods for each pipeline stage. The complexity of each stage in terms of computing time is analyzed for each method. Then the demands and the scope of interactive volume rendering are briefly summarized. Based on this analysis we examine alternate solutions to optimize each pipeline stage in order to allow interactive visualization while maintaining the image quality. The proposed method maximizes interactive manipulation possibilities and minimizes runtimes by sampling at the Nyquist rate and by flexibly trading off quality for performance at any pipeline level. Our approach is suitable for rendering large, scalar, discrete volume fields such as semitransparent clouds (or X-rays) on the fly.

Key words

Volume rendering Scientific visualization Interactive systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blinn JF (1982) Light reflection functions for simulation of clouds and dusty surfaces, ACM Comput Graph, SIGGRAPH-82 16, 21–29Google Scholar
  2. Cameron G, Undrill P (1992) Rendering volumetric medical image data on a SIMD architecture computer. Proc Third Eurographics Workshop on Rendering. Bristol, UK, pp 135–145Google Scholar
  3. Cook RL (1986) Stochastic sampling in computer graphics. ACM Trans Graph 5:51–72Google Scholar
  4. Danskin J, Hanrahan P (1992) Fast algorithms for volume ray tracing. ACM SIGGRAPH Proc Workshop on Volume Visualization. Boston, pp 91–98Google Scholar
  5. Drebin R, Carpender L, Hanrahan P (1988) Volume Rendering. ACM Comput Graph SIGGRAPH-88 22:65–74Google Scholar
  6. Foley T, van Dam A (1982) Fundamentals of interactive computer graphics. Addison-Wesley Publishing, Reading, MassachusettsGoogle Scholar
  7. Foley T, Lane D, Nielson G (1990) Towards animating raytraces volume visualization. Visualization Comput Animation 1:2–8Google Scholar
  8. Frühauf M (1991) Combining volume rendering with line and surface rendering. Proc EUROGRAPHICS'91, Vienna, pp 21–32Google Scholar
  9. Garrity M (1990) Ray-tracing irregular volume data. ACM Comput Graph Proc San Diego Workshop on Volume Visualization 24:35–40Google Scholar
  10. Kajiya JT, von Herzen B (1984) Ray-tracing volume densities. ACM Comput Graph SIGGRAPH-84 18:165–174Google Scholar
  11. Kaufman A (1991) State of the art in volume visualization. In: Coquillart S (ed) Eurographics'91 state of the art reports, vol. EG91 STAR, Vienna, pp 173–186Google Scholar
  12. Krüger W (1991) The application of transport theory to visualization of 3D scalar data fields. Computers in Graphics, July 1991, 397–406Google Scholar
  13. Laur D, Hanrahan P (1991) Hierarchical splatting: a progressive refinement algorithm for volume rendering. ACM Comput Graph SIGGRAPH-91 25:285–288Google Scholar
  14. Levoy M (1988) Display of surfaces from volume data. IEEE Comput Graph and Appl 8:29–37Google Scholar
  15. Levoy M (1990) Volume rendering by adaptive refinement. Visual Comput 6:2–7Google Scholar
  16. Levoy M (1990) Efficient ray-tracing of volume data. ACM Trans Graph 9:245–261Google Scholar
  17. Lorensen W, Cline H (1987) Marching cubes: a high resolution 3D surface construction algorithm. ACM Comput Graph SIGGRAPH-87 21:163–169Google Scholar
  18. Max N, Hanrahan P, Crawfis R (1990) Area and volume coherence for efficient visualization of 3D scalar functions. ACM Comput Graph Proc San Diego workshop on volume visualization 24:27–33Google Scholar
  19. Max NL (1986) Atmospheric illumination and shadows. ACM Comput Graph SIGGRAPH-86 20:117–124Google Scholar
  20. Novins K, Arvo J (1992) Controlled precision volume integration. ACM SIGGRAPH Proc 1992 Workshop on volume visualization. Boston, pp 83–89Google Scholar
  21. Novins K, Sillion F, Greenberg D (1990) An efficient method for volume rendering using perspective projection. ACM Comput Graph Proc San Diego Workshop on volume visualization 24:95–102Google Scholar
  22. Oppenheim A, Schafer R (1975) Digital signal processing. Prentice-Hall International Editions, pp 28–29Google Scholar
  23. Peachy DR (1988) Antialiasing solid textures. Inagkage M ACM SIGGRAPH-88 “Functional Based Modeling”. Course Notes 28:13–35Google Scholar
  24. Sabella P (1988) A rendering algorithm for visualizing 3D scalar fields. ACM Comput Graph 22:51–58Google Scholar
  25. Sakas G (1990) Fast rendering of arbitrarily distributed volume densities. Proc EUROGRAPHICS'90, Montreux-Switzerland, pp 519–530Google Scholar
  26. Sakas G, Gerth M (1991) Sampling and anti-aliasing discrete 3D volume density textures. EUROGRAPHICS'91 Award Paper, IEEE Comput and Graph 16:121–134, Pergamon Press, 1992 and Proc EUROGRAPHICS'91. Vienna, pp 87–102, North-Holland Publishers, September 1991Google Scholar
  27. Sakas G, Hartig J (1992) Interactive visualization of large scalar voxel fields. Proc IEEE Visualization'92. Boston, pp 29–36Google Scholar
  28. Schröder P, Krüger W (1992) Data parallel volume rendering algorithms for interactive visualization. Workshop Proc visualization—the role of interactivity and realtime. GMD-Gesellschaft für Mathematik und Datenverarbeitung, St-AugustinGoogle Scholar
  29. Schröder P, Stoll G (1992) Data parallel volume rendering as line drawing. ACM SIGGRAPH Proc 1992 Workshop on volume visualization. Boston, pp 25–32Google Scholar
  30. Shirley P, Tuchman A (1990) A polygonal approximation to direct scalar volume rendering. ACM Comput Graph Proc San Diego workshop on volume visualization 24:63–70Google Scholar
  31. Stredney D, Yagel R, May S, Torello M (1992) Supercomputer assisted brain visualization with an extended ray tracer. ACM SIGGRAPH Proc 1992 workshop on volume visualization. Boston, pp 33–38.Google Scholar
  32. Upson C, Keeler M (1988) V-BUFFER: visible volume rendering. ACM Comput Graph SIGGRAPH-88 22:59–64Google Scholar
  33. Westover L (1990) Footprint evaluation for volume rendering. ACM Comput Graph SIGGRAPH-90 24:367–376Google Scholar
  34. Wilhelms, J (1991) Decisions in volume rendering. Hanrahan P (ed) State-of-the-art in volume visualization. ACM SIGGRAPH-91 Course Notes 8:11–110Google Scholar
  35. Wilhelms J, Van Gelder A (1991) A coherent projection approach for direct volume rendering. ACM Comput Graph SIGGRAPH-91 25:275–284Google Scholar
  36. Williams L (1983) Pyramidal parametrics. ACM Comput Graph SIGGRAPH-83 17:1–11Google Scholar
  37. Williams P (1992) Interactive splatting of non-rectlinear volumes. Proc IEEE Visualization'92, Boston, pp 37–44Google Scholar
  38. Williams P, Max N (1992) A volume density optical model. ACM SIGGRAPH Proc 1992 workshop on volume visualization. Boston, pp 61–68Google Scholar
  39. Yagel R, Kaufman A (1992) Template-based volume viewing. Comput Graph Forum. Proc EUROGRAPHICS'92. Cambridge 11:C153–C167Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Georgios Sakas
    • 1
  1. 1.Fraunhofer-Institute for Computer GraphicsDarmstadtGermany

Personalised recommendations