Formal Aspects of Computing

, Volume 2, Issue 1, pp 331–341 | Cite as

X-machines and the halting problem: Building a super-turing machine

  • Mike Stannett


We describe a novel machine model of computation, and prove that this model is capable of performing calculations beyond the capability of the standard Turing machine model. In particular, we demonstrate the ability of our model to solve the Halting problem for Turing machines. We discuss the issues involved in implementing the model as a physical device, and offer some tentative suggestions.

Key words

Computability Turing machine Super-Turing Halting problem X-machine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Cou54]
    Coulson, C. A.:Electricity. Oliver and Boyd, 1954.Google Scholar
  2. [Cro76]
    Cross, R. C.:Electricity and Magnetism. Longman, 1976.Google Scholar
  3. [Cut80]
    Cutland, N. J.:Computability. Cambridge University Press, 1980.Google Scholar
  4. [Deu85]
    Deutsch, D.: Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer.Proc. Royal Soc., A400, 87–117 (1985).Google Scholar
  5. [Deu89]
    Deutsch, D.: Quantum Communication Thwarts Eavesdroppers.New Scientist, 9 December (1989).Google Scholar
  6. [Ei174]
    Eilenberg, S.:Automata, Languages, and Machines, vol. A. Academic Press, 1974.Google Scholar
  7. [Ho187]
    Holcombe, W. M. L.: Formal Methods in the Specification of the Human-Computer Interface.Int. CIS J.,1(2), 24–36 (1987).Google Scholar
  8. [Ho188]
    Holcombe, W. M. L.: X-machines as a Basis for System Specification.Soft. Eng. J.,3(2), 69–76 (1988).Google Scholar
  9. [Pen89]
    Penrose, R.:The Emperor's New Mind. Oxford University Press, 1989.Google Scholar
  10. [RoB81]
    Roberts, A. and Bush, B. (eds):Neurones without Impulses. Cambridge University Press, 1981.Google Scholar
  11. [Wei73]
    Weir, A. J.:Lebesgue Integration and Measure. Cambridge University Press, 1973.Google Scholar
  12. [Wi170]
    Willard, S.:General Topology. Addison-Wesley, 1970.Google Scholar

Copyright information

© BCS 1990

Authors and Affiliations

  • Mike Stannett
    • 1
  1. 1.Formal Methods GroupSheffield UniversitySheffieldUK

Personalised recommendations