Journal of Protein Chemistry

, Volume 15, Issue 3, pp 305–313

Analysis of the active center of branching enzyme II from maize endosperm

  • Takashi Kuriki
  • Hanping Guan
  • Mirta Sivak
  • Jack Preiss
Article

Abstract

Analysis of the primary structure of mBEII, with those of other branching and amylolytic enzymes as reference, identifies four highly conserved regions which may be involved in substrate binding and in catalysis. When one of the amino acid residues corresponding to the putative catalytic sites of mBEII, i.e., Asp-386, Glu-441, and Asp-509, was replaced, activity disappeared. These putative catalytic residues are located in three different regions (regions 2–4) of the four highly conserved regions (regions 1–4) which exist in the primary structure of most starch hydrolases and related enzymes, including branching enzymes. Region 3, which contains Glu-441 as one of the putative catalytic residues, was located downstream of the carboxyl-terminal position previously reported. The importance of the carboxyl amino acid residues was also demonstrated by chemical modification of the branching enzyme protein using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide.

Key words

Branching enzyme active center site-directed mutagenesis EDAC modification α-amylase family 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baba, T., Kimura, K., Mizuno, K., Etoh, H., Ishida, Y., Shida, O., and Arai, Y. (1991). Sequence conservation of the catalytic region of amylolytic enzymes in maize branching enzyme-I,Biochem. Biophys. Res. Commun. 181, 87–94.PubMedGoogle Scholar
  2. Bhattacharyya, M., Smith, A. M., Ellis, T. H. N., Hedley, C., and Martin, C. (1990). The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme,Cell 60, 115–122.PubMedGoogle Scholar
  3. Boel, E., Brady, L., Brozozowski, A. M., Derewenda, Z., Dodson, G. G., Jansen, V. J., Petersen, S. B., Swift, H., Thim, L., and Woldike, H. F. (1990). Calcium binding in α-amylases: An X-ray diffraction study at 2.1-Å resolution of two enzymes fromAspergillus, Biochemistry 29, 6244–6249.PubMedGoogle Scholar
  4. Boyer, C. D., and Preiss, J. (1978). Multiple forms of (1,4)-α-D-glucan, (1,4)-α-D-glucan-6-glycosyl transferase from developingZea mays L kernels,Carbohydr. Res. 61, 321–334.Google Scholar
  5. Buisson, G., Duée, E., Haser, R., and Payan, F. (1987). Three dimensional structure or porcine pancreaticα-amylase at 2.9 Å solution. Role of calcium in structure and activity.EMBO J. 6, 3909–3916.PubMedGoogle Scholar
  6. Burnette, W. W. (1981). Western blotting. Electrophoretic transfer of protein from SDS-Polyacrylamide gels to nitrocellulose and radiographic detection with antibody and radiolabeled protein A,Anal. Biochem. 112, 195–203.PubMedGoogle Scholar
  7. Fisher, D. K., Boyer, C. D., and Hannah, L. C. (1993). Starch branching enzyme II from maize endosperm,Plant Physiol. 102, 1045–1046.PubMedGoogle Scholar
  8. Guan, H. P., and Preiss, J. (1993). Differentiation of the properties of the branching isozymes form maize (Zea mays),Plant Physiol. 102, 1269–1273.PubMedGoogle Scholar
  9. Guan, H. P., Baba, T., and Preiss, J. (1994a). Expression of branching enzyme I of maize endosperm inEscherichia coli, Plant Physiol. 104, 1449–1453.PubMedGoogle Scholar
  10. Guan, H. P., Baba, T., and Preiss, J. (1994b). Expression of branching enzyme II of maize endosperm inEscherichia coli, Cell. Mol. Biol. 40, 981–985.PubMedGoogle Scholar
  11. Guan, H. P., Kuriki, T., Sivak, M., and Preiss, J. (1995). Maize branching enzyme catalyzes synthesis of glycogen-like polysaccharide in glgB-deficientEscherichia coli, Proc. Natl. Acad. Sci. USA 92, 964–967.PubMedGoogle Scholar
  12. Hawker, J. S., Ozbun, J. L., Ozaki, H., Greenberg, E., and Preiss, J. (1974). Interaction of spinach leaf adenosine diphosphate glucoseα-1,4 glucanα-4-glucosyl transferase andα-1,4 glucan,α-1,4-glucan-6-glycosyl transferase in synthesis of branchedα-glucan,Arch. Biochem. Biophys. 160, 530–551.PubMedGoogle Scholar
  13. Holm, L., Koivula, A. K., Lehtovaara, P. M., Hemminki, A., and Knowles, J. K. C. (1990). Random mutagenesis used to probe the structure and function ofBacillus stearother-mophilus alpha-amylase,Protein Eng. 3, 181–191.PubMedGoogle Scholar
  14. Holmes, E., Boyer, C., and Preiss, J. (1982). Immunological characterization ofEscherichia coli B glycogen synthase and branching enzyme and comparison with enzymes from other bacteria,J. Bacteriol. 151, 1444–1453.PubMedGoogle Scholar
  15. Jespersen, H. M., MacGregor, E. A., Sierks, M. R., and Svensson, B. (1991). Comparison of the domain-level organization of starch hydrolases and related enzymes,Biochem. J. 280, 51–55.PubMedGoogle Scholar
  16. Jespersen, H. M., MacGregor, E. A., Henrissat, B., Sierks, M., and Svensson, B. (1993). Starch- and glycogen-debranching and branching enzymes: Prediction of structural features of the catalytic (b/a)8-barrel domain and evolutionary relationship to other amylolytic enzymes.J. Protein Chem. 12, 791–805.PubMedGoogle Scholar
  17. Klein, C., and Schulz, G. E. (1991). Structure of cyclodextrin glycosyltransferase refined at 2.0 Å resolution,J. Mol. Biol. 217, 737–750.PubMedGoogle Scholar
  18. Kossmann, J., Visser, R. G. F., Müller-Röber, B. T., Willmitzer, L., and Sonnenwald, U. (1991). Cloning and expression analysis of a potato cDNA that encodes branching enzyme: Evidence for co-expression for starch biosynthetic genes,Mol. Gen. Genet. 203, 237–244.Google Scholar
  19. Kubota, M., Matsuura, Y., Sakai, S., and Katsube, Y. (1991). Molecular structure ofB. stearothermophilus cyclodextrin glucanotransferase and analysis of substrate binding site,Denpun Kagaku 38, 141–146.Google Scholar
  20. Kuriki, T. (1992). Can protein engineering interconvert glucanohydrolases/glucanotransferases, and their specificities?Trends Glycosci. Glycotechonol. 4, 567–572.Google Scholar
  21. Kuriki, T., and Okada, S. (1995). A new concept of the criteria of various amylolytic enzymes and related enzymes; similarities in specificities and structures, inEnzyme Chemistry and Molecular Biology of Amylases and Related Enzymes (lase Research Society of Japan ed.), CRC Press, Boca Raton, Florida, pp. 87–92.Google Scholar
  22. Kuriki, T., Okada, S., and Imanaka, T. (1988). New type of pullulanase fromBacillus stearothermophilus and molecular cloning and expression of the gene inBacillus subtilis, J. Bacteriol. 170, 1554–1559.PubMedGoogle Scholar
  23. Kuriki, T., Takata, H., Okada, S., and Imanaka, T. (1991). Analysis of the active center ofBacillus stearothermophilus neopullulanase,J. Bacteriol. 173, 6147–6152.PubMedGoogle Scholar
  24. Laemmli, U. K. (1970). Cleavage of structure proteins during the assembly of the head bacteriophage T4,Nature 227, 680–685.PubMedGoogle Scholar
  25. Levy, H. M., Leber, P. D., and Ryan, E. M. (1963). Inactivation of myosin by 2,4-dinitrophenol and protection by adenosine triphosphate and other phosphate compounds,J. Biol. Chem. 238, 3654–3659.Google Scholar
  26. Mathupala, S. P., Lowe, S. E., Podkovyrov, S. M., and Zeikus, J. G. (1993). Sequencing of the amylopullulanase (apu) gene ofThermoanaerobactor ethanolicus 39E, and identification of the active site by site-directed mutagenesis,J. Biol. Chem. 268, 16332–16344.PubMedGoogle Scholar
  27. Matsuura, Y., Kusunoki, M., Harada, W., and Kakudo, M. (1984). Structure and possible catalytic residues of Takaamylase A,J. Biochem. (Tokyo)95, 697–702.Google Scholar
  28. Matsuura, Y., Kusunoki, M., and Kakudo, M. (1991). Structure and catalytic implications of Taka-amylase A,Denpun Kagaku 38, 137–139.Google Scholar
  29. Messing, J. (1983). New M13 vectors for cloning,Meth. Enzymol. 101, 20–78.PubMedGoogle Scholar
  30. Mizuno, K., Kawasaki, T., Shimada, H., Satoh, H., Kobayashi, E., Okumura, S., Arai, Y., and Baba, T. (1993). Alteration of the structural properties of starch components by lack of an isoform of starch branching enzyme in rice seeds,J. Biol. Chem. 268, 19084–19091.PubMedGoogle Scholar
  31. Nakamura, A., Haga, K., Ogawa, S., Kuwano, K., Kimura, K. and Yamane, K. (1992). Functional relationship between cyclodextrin glucanotransferase from alkalophilicBacillus andα-amylases. Site-directed mutagenesis of the conserved two Asp and one Glu residues,FEBS Lett. 296, 37–40.PubMedGoogle Scholar
  32. Nakamura, Y., and Yamanouchi, H. (1992). Nucleotide sequence of a cDNA encoding starch-branching enzyme, or Q-enzyme I, from rice endosperm.Plant Physiol. 99, 1265–1266.Google Scholar
  33. Nakamura, Y., Takeichi, T., Kawaguchi, K., and Yamanouchi, H. (1992). Purification of two forms of starch branching enzyme (Q-enzyme) from developing rice endosperm,Physiol. Plant. 84, 329–335.Google Scholar
  34. Plant, A. R., Clemens, R. M., Morgan, H. W., and Daniel, R. M. (1987). Active-site- and substrate-specificity ofThermoanaerobium Tok6-B1 pullulanase,Biochem. J. 246, 537–541.PubMedGoogle Scholar
  35. Podkovyrov, S. M., Burdette, D., and Zeikus, J. G. (1993). Analysis of the catalytic center of cyclomaltodextrinase fromThermoanaerobactor ethanolicus 39E,FEBS Lett. 317, 259–262.PubMedGoogle Scholar
  36. Podkovyrov, S. M., Burdette, D., and Zeikus, J. G. (1993). Analysis of the catalytic center of cyclomaltodextrinase fromThermoanaerobactor ethanolicus 39E,FEBS Lett. 317, 259–262.PubMedGoogle Scholar
  37. Preiss, J. (1991). Biology and molecular biology of starch synthesis and regulation,Oxf. Surv. Plant. Mol. Cell Biol. 7, 59–114.Google Scholar
  38. Romeo, T., Kumar, A., and Preiss, J. (1988). Analysis of theEscherichia coli glycogen gene cluster suggests that catabolic enzymes are encoded among the biosynthetic genes,Gene 70, 363–376.PubMedGoogle Scholar
  39. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989).Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  40. Sanger, F., Nicklen, S., and Coulson. (1977). DNA sequencing with chain-terminating inhibitors,Proc. Natl. Acad. Sci. USA 74, 5463–5467.PubMedGoogle Scholar
  41. Smith, A. M. (1988). Major differences in isoforms of starch-branching enzyme between developing embryos of round and wrinkled-seeded peas (Pisum sativum L.),Planta 175, 270–279.Google Scholar
  42. Smith, P. K., Krohn, R. J., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid,Anal. Biochem. 150, 76–85.PubMedGoogle Scholar
  43. Svensson, B. (1994). Protein engineering in theα-amylase family: Catalytic mechanism, substrate specificity, and stability.Plant Mol. Biol. 25, 141–157.Google Scholar
  44. Takata, H., Kuriki, T., Okada, S., Takesada, Y., Iizuka, M., Minamiura, N., and Imanaka, T. (1992). Action of neopullulanase. Neopullulanase catalyzes both hydrolysis and transglycosylation atα-(1-4)- andα-(1-6)-glucosidic linkages,J. Biol. Chem. 267, 18447–18452.PubMedGoogle Scholar
  45. Takata, H., Takaha, T., Kuriki, T., Okada, S., Takagi, M., and Imanaka, T. (1994). Properties and active center of thermostable branching enzyme fromBacillus stearothermophilus, Appl. Environ. Microbiol. 60, 3096–3104.PubMedGoogle Scholar
  46. Takeda, Y., Guan, H. P., and Preiss, J. (1993). Branching of amylose by branching isoenzymes of maize endosperm,Carbohydr. Res. 240, 253–263.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Takashi Kuriki
    • 1
  • Hanping Guan
    • 1
  • Mirta Sivak
    • 1
  • Jack Preiss
    • 1
  1. 1.Department of BiochemistryMichigan State UniversityEast Lansing
  2. 2.Biochemical Research LaboratoriesEzaki Glico Co., Ltd.OsakaJapan
  3. 3.ExSeed Genetics LLCIowa State UniversityAmes

Personalised recommendations