Journal of Protein Chemistry

, Volume 14, Issue 8, pp 721–730

Structural effects of the binding of GTP to the wild-type and oncogenic forms of theras-gene-encoded p21 proteins

  • Regina Monaco
  • James M. Chen
  • Fred K. Friedman
  • Paul Brandt-Rauf
  • Denise Chung
  • Matthew R. Pincus
Article

Abstract

Molecular dynamics calculations have been performed to determine the average structures ofras-gene-encoded p21 proteins bound to GTP, i.e., the normal (wild-type) protein and two oncogenic forms of this protein, the Val 12- and Leu 61-p21 proteins. We find that the average structures for all of these proteins exhibit low coordinate fluctuations (which are highest for the normal protein), indicating convergence to specific structures. From previous dynamics calculations of the average structures of these proteins bound to GDP, major regional differences were found among these proteins (Monacoet al. (1995),J. Protein Chem., in press). We now find that the average structures of the oncogenic proteins are more similar to one another when the proteins are bound to GTP than when they are bound to GDP (Monacoet al. (1995),J. Protein Chem., in press). However, they still differ in structureat specific amino acid residues rather than in whole regions, in contradistinction to the results found for the p21-GDP complexes. Two exceptions are the regions 25–32, in anα-helical region, and 97–110. The two oncogenic (Val 12- and Leu 61-) proteins have similar structures which differ significantly in the region of residues 97–110. This region has recently been identified as being critical in the interaction of p21 with kinase target proteins. The differences in structure between the oncogenic proteins suggest the existence of more than one oncogenic form of the p21 protein that can activate different signaling pathways.

Key words

Oncogenic p21 proteins molecular dynamics GTP changes in conformation effector domains 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adari, H., Lowy, D. R., Willumsen, B. F., Der, C. J., and McCormick, F. (1988).Science 240, 518–521.PubMedGoogle Scholar
  2. Adler, V., Pincus, M. R., Brandt-Rauf, P. W., and Ronai, Z. A. (1995).Proc. Natl. Acad. Sci. USA,92, 10585–10589.PubMedGoogle Scholar
  3. Barbacid, M. (1987).Annu. Rev. Biochem. 56, 779–827.CrossRefPubMedGoogle Scholar
  4. Baskin, L., Haspel, J., O'Driscol, K., Ronai, Z., Friedman, F., Brandt-Rauf, P. W., Chung, D., Weinstein, I. B., Nishimura, S., Yamaizumi, Z., Singh, G., Dykes, D., Murphy, R., and Pincus, M. R. (1992).Med. Sci. Res. 20, 813–815.Google Scholar
  5. Chardin, P., Camonis, J. H., Gale, N. W., Van Aelst, L., Schlessinger, J., Wigler, M. H., and Bar-Sagi, D. (1993).Science 260, 1338–1343.PubMedGoogle Scholar
  6. Chen, J. M., Lee, G., Murphy, R. B., Carry, R. P., Brandt-Rauf, P. W., Friedman, E., and Pincus, M. R. (1989).J. Biomol. Struct. Dynamics 6, 859–875.Google Scholar
  7. Chen, J. M., Grad, R., Monaco, R., and Pincus, M. R. (1995).J. Protein Chem., in press.Google Scholar
  8. Chung, D. L., Brandt-Rauf, P. W., Murphy, R. B., Nishimura, S., Yamaizumi, Z., Weinstein, I. B., and Pincus, M. R. (1991).Anticancer Res. 11, 1373–1378.PubMedGoogle Scholar
  9. Chung, D. L., Joran, A., Friedman, F. K., Robinson, R. R., Brandt-Rauf, P. W., Weinstein, I. B., Ronai, Z. A., Baskin, L., Dykes, D. C., Murphy, R. B., Nishimura, S., Yamaizumi, Z., and Pincus, M. R. (1992).Exp. Cell Res. 203, 329–335.PubMedGoogle Scholar
  10. Clanton, D. J., Lu, Y., Blair, D. G., and Shih, T. Y. (1987).Mol. Cell. Biol. 7, 3092–3097.PubMedGoogle Scholar
  11. Dykes, D. C., Friedman, F. K., Luster, S. M., Murphy, R. B., Brandt-Rauf, P. W., and Pincus, M. R. (1993).J. Biomol. Struct. Dynam. 11, 443–458.Google Scholar
  12. Haspel, J., Dykes, D. C., Friedman, F. K., Robinson, R., Chung, D., Ronai, Z., Brandt-Rauf, P. W., Baskin, L., Weinstein, I. B., Nishimura, S., Yamaizumi, Z., Singh, G., Murphy, R. B., and Pincus, M. R. (1992).Med. Sci. Res. 20, 809–811.Google Scholar
  13. Krengel, U., Schlichting, L., Scherer, A., Schumann, R., Frech, M., John, J., Kabsch, W., Pai, E. F., and Wittinghofer, A. (1990).Cell 62, 539–548.PubMedGoogle Scholar
  14. Lee, G., Ronai, Z. A., Pincus, M. R., Murphy, R. B., Delohery, T. M., Nishimura, S., Yamaizumi, Z., Weinstein, I. B., and Brandt-Rauf, P. W. (1990).Med. Sci. Res. 18, 771–772.Google Scholar
  15. Lee, L., Ronai, Z. A., Pincus, M. R., Brandt-Rauf, P. W., Murphy, R. B., Delohery, T. M., Nishimura, S., Yamaizumi, Z., and Weinstein, I. B. (1989).Proc. Natl. Acad. Sci. USA 86, 8678–8682.PubMedGoogle Scholar
  16. Leevers, S. J., Paterson, H. F., and Marshall, C. J. (1994).Nature 369, 411–414.PubMedGoogle Scholar
  17. Liwo, A., Gibson, K. D., Scheraga, H. A., Brandt-Rauf, P. W., Monaco, R., and Pincus, M. R. (1994).J. Protein Chem. 13, 237–251.PubMedGoogle Scholar
  18. Monaco, R., Chen, J. M., Chung, D., Brandt-Rauf, P. W., and Pincus, M. R. (1995).J. Protein Chem., in press.Google Scholar
  19. Moodie, S. A., Willumsen, B. M., Weber, M. J., and Wolfman, A. (1993).Science 260, 1588–1591.PubMedGoogle Scholar
  20. Nassar, N., Horn, G., Herrmann, C., Scherer, A., McCormick, F., and Wittinghofer, A. (1995).Nature 375, 554–560.PubMedGoogle Scholar
  21. Nemethy, G., Pottle, M. S., and Scheraga, H. A. (1983).J. Phys. Chem. 87, 1883–1887.CrossRefGoogle Scholar
  22. Pai, E. F., Krengel, U., Petsko, G. A., Goody, R. S., Kabsch, W., and Wittinghofer, A. (1990).EMBO J. 9, 2351–2359.PubMedGoogle Scholar
  23. Pincus, M. R., van Renswoude, J., Harford, J. B., Chang, E. H., Carty, R. P., and Klausner, R. D. (1983).Proc. Natl. Acad. Sci. USA 80, 5253–5257.PubMedGoogle Scholar
  24. Pincus, M. R., Chung, D. L., Dykes, D. C., Brandt-Rauf, P. W., Weinstein, I. B., Yamaizumi, Z., and Nishimura, S. (1992).Ann. Clin. Lab. Sci. 22, 323–342.PubMedGoogle Scholar
  25. Polakis, P., and McCormick, F. (1993).J. Biol. Chem. 268, 9157–9160.PubMedGoogle Scholar
  26. Rodriguez-Viciana, P., Warne, P. H., Dhand, R., Vanhaesebroeck, B., Gout, I., Fry, M. J., Waterfield, M. D., and Downward, J. (1994).Nature 370, 527–532.PubMedGoogle Scholar
  27. Trahey, M., and McCormick, F. (1987).Science 238, 542–545.PubMedGoogle Scholar
  28. Vasquez, M., Nemethy, G., and Scheraga, H. A. (1983).Macromolecules 16, 1043–1049.Google Scholar
  29. Vogel, U., Dixon, R. A. F., Schaber, M. D., Diehl, R. E., Marshall, M. S., Scolnick, E. M., Sigal, I. S., and Gibbs, J. B. (1988).Nature 335, 90–93.PubMedGoogle Scholar
  30. Weiner, S. J., Kollman, P. A., Nguyen, D. T., and Case, D. A. (1986).J. Comput. Chem. 7, 230–252.Google Scholar
  31. Willumsen, B. M., Vass, W. C., Velu, T. J., Papageorge, A. G., Schiller, J. T., and Lowy, D. R. (1991).Mol. Cell Biol. 11, 6026–6033.PubMedGoogle Scholar
  32. Zimmerman, S. S., Pottle, M. S., Nemethy, G., and Scheraga, H. A. (1977).Macromolecules 10, 1–9.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Regina Monaco
    • 1
    • 2
    • 3
  • James M. Chen
    • 4
  • Fred K. Friedman
    • 5
  • Paul Brandt-Rauf
    • 6
  • Denise Chung
    • 7
  • Matthew R. Pincus
    • 2
    • 3
  1. 1.Department of ChemistryNew York UniversityNew York
  2. 2.Department of Pathology and Laboratory MedicineVeterans Affairs Medical CenterBrooklyn
  3. 3.Department of PathologySUNY Health Science Center at BrooklynBrooklyn
  4. 4.Dupont Agricultural ProductsStein-Haskell Research CenterNewark
  5. 5.Laboratory of Molecular CarcinogenesisNational Institutes of HealthBethesda
  6. 6.Division of Environmental SciencesColumbia College of Physicians and SurgeonsNew York
  7. 7.Department of ChemistryLong Island UniversityBrooklyn

Personalised recommendations