Journal of Protein Chemistry

, Volume 14, Issue 8, pp 645–653

Conserved cystatin segments as models for designing specific substrates and inhibitors of cysteine proteinases

  • Gilles Lalmanach
  • Carole Serveau
  • Michèle Brillard-Bourdet
  • Jair R. Chagas
  • Roger Mayer
  • Luiz Juliano
  • Francis Gauthier
Article

Abstract

Peptide segments derived from consensus sequences of the inhibitory site of cystatins, the natural inhibitors of cysteine proteinases, were used to develop new substrates and inhibitors of papain and rat liver cathepsins B, H, and L. Papain hydrolyzedAbz-QVVAGA-EDDnp andAbz-LVGGA-EDDnp at about the same rate, with specificity constants in the 107M−1 sec−1 range; cathepsin L also hydrolyzes both substrates with specificity constants in the 105 M−1 sec−1 range due to lowerkcat values, with theKm's being identical to those with papain. OnlyAbz-LVGGA-EDDnp was rapidly hydrolyzed by cathepsin B, and to a lesser extent by cathepsin H. Peptide substrates that alternate these two building blocks (LVGGQVVAGAPWK and QVVAGALVGGAPWK) discriminate the activities of cathepsins B and L and papain. Cathepsin L was highly selective for cleavage at the G-G bond of the LVGG fragment in both peptides. Papain and cathepsin B cleaved either the LVGG fragment or the QVVAG fragment, depending on their position within the peptide. While papain was more specific for the segment located C-terminally, cathepsin B was specific for that in N-terminal position. Peptidyl diazomethylketone inhibitors based on these two sequences also reacted differently with papain and cathepsins. GlcA-QVVA-CHN2 was a potent inhibitor of papain and reacted with papain 60 times more rapidly (k+0= 1,100,000 M−1 sec−1) than with cathepsin L, and 220 times more rapidly than with cathepsin B. Cathepsins B and L were preferentially inhibited by Z-RLVG-CHN2. Thus cystatin-derived peptides provide a valuable framework for designing sensitive, selective substrates and inhibitors of cysteine proteinases.

Key words

Cysteine proteinase cystatin diazomethylketone peptidyl fluorogenic substrate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamson, M., Ritonja, A., Brown, M. A., Grubb, A., Machleidt, W., and Barrett, A. J. (1987)J. Biol. Chem. 262, 9688–9694.PubMedGoogle Scholar
  2. Assfalg-Machleidt, I., Rothe, G., Klingel, S., Banati, R., Mangel, W., Valet, G., and Machleidt, W. (1992).Biol. Chem. Hoppe-Seyler 373, 433–440.PubMedGoogle Scholar
  3. Barrett, A. J., Kembhavi, A. A., Brown, M. A., Kirschke, H., Knight, C. G., Tamai, M., and Hanada, K. (1982).Biochem. J. 201, 189–198.PubMedGoogle Scholar
  4. Berti, P. J., and Storer, A. C. (1995).J. Mol. Biol. 246, 273–283.PubMedGoogle Scholar
  5. Björk, I., Pol, E., Raub-Segall, E., Abrahamson, M., Rowan, A. D., and Mort, J. S. (1994).Biochem. J. 299, 219–225.PubMedGoogle Scholar
  6. Björk, I., Brieditis, I., and Abrahamson, M. (1995).Biochem. J. 306, 513–518.PubMedGoogle Scholar
  7. Bode, W., and Huber, R. (1992).Eur. J. Biochem. 204, 433–451.PubMedGoogle Scholar
  8. Bode, W., Engh, R., Musil, D., Thiele, U., Huber, R., Karshikov, A., Brzin, J., Kos, J., and Turk, V. (1988).EMBO J. 7, 2593–2599.PubMedGoogle Scholar
  9. Borras-Cuesta, F., Golvano, J., Sarobe, P., Lasarte, J. J., Prieto, P., Szabo, A., Guillaume, J. L., and Guillet, J. G. (1991).Biologicals 19, 187–190.PubMedGoogle Scholar
  10. Buttle, D. J., Kembhavi, A. A., Sharp, S. L., Shute, R. E., Rich, D. H., and Barrett, A. J. (1989).Biochem. J. 261, 469–476.PubMedGoogle Scholar
  11. Chagas, J. R., Juliano, L., and Prado, E. S. (1991).Anal. Biochem. 192, 419–425.PubMedGoogle Scholar
  12. Delaissé, J. M., Ledent, P. and Vaes, G. (1991).Biochem. J. 279, 167–274.PubMedGoogle Scholar
  13. Dieckmann, T., Mitschang, L., Hofmann, M., Kos, J., Turk, V., Auerswald, E. A., Jaenicke, R., & Oschkinat, H. (1993).J. Mol. Biol. 234, 1048–1059.PubMedGoogle Scholar
  14. El Moujahed, A., Gutman, N., Brillard, M., and Gauthier, F. (1990).FEBS Lett. 265, 137–140.PubMedGoogle Scholar
  15. Engh, R. A., Dieckmann, T., Bode, W., Auerswald, E. A., Turk, V., Huber, R., and Oschkinat, H. (1993).J. Mol. Biol. 234, 1060–1069.PubMedGoogle Scholar
  16. Garcia-Echeverria, C., and Rich, D. H. (1992).Febs. Lett. 297, 100–102.PubMedGoogle Scholar
  17. Gauthier, F., Moreau, T., Lalmanach, G., Brillard-Bourdet, M., Ferrer-Di Martino, M., and Juliano, L. (1993).Arch. Biochem. Biophys. 306, 304–308.PubMedGoogle Scholar
  18. Genenger, G., Lenzen, S., Mentele, R., Assfalg-Machleidt, I., and Auerswald, E. A. (1991).Biomed. Biochim. Acta 50, 621–625.PubMedGoogle Scholar
  19. Green, G. D. J., and Shaw, E. (1981).J. Biol. Chem. 256, 1923–1928.PubMedGoogle Scholar
  20. Grubb, A., Abrahamson, M., Olafsson, I., Trojnar, J., Kasprzykowska, R., Kasprzykowski, F., and Grzonka, Z. (1990).Biol. Chem. Hoppe-Seyler 371, 137–144.Google Scholar
  21. Hall, A., Abrahamson, M., Grubb, A., Trojnar, J., Kania, P., Kasprzykowska, R., and Kasprzykowski, F. (1992).J. Enzyme Inhib. 6, 113–123.PubMedGoogle Scholar
  22. Harding, C. V., Collins, D. S., Slot, J. W., Geuze, H. J., and Unanue, E. R. (1991).Cell 64, 393–401.PubMedGoogle Scholar
  23. Harnois-Pontoni, M., Monsigny, M., and Mayer, R. (1991).Anal. Biochem. 193, 248–255.PubMedGoogle Scholar
  24. Johnson, D., and Travis, J. (1977).Biochem. J. 163, 639–641.PubMedGoogle Scholar
  25. Katunuma, N. (1989). InIntracellular Proteolysis (Katunuma, N., and Kominami, E., eds.), Japan Scientific Societies Press, Tokyo, pp. 3–23.Google Scholar
  26. Katunuma, N., and Kominami, E. (1986). InCysteine Proteinases and Their Inhibitors (Turk, V., ed.), W. de Gruyter, New York, pp. 219–227.Google Scholar
  27. Koga, H., Yamada, H., Nishimura, Y., Kato, K., and Imoto, T. (1990).J. Biochem. (Tokyo)108, 976–982.Google Scholar
  28. Kräusslich, H. G., and Wimmer, E. (1988).Annu. Rev. Biochem. 57, 701–754.PubMedGoogle Scholar
  29. Lalmanach, G., Hoebeke, J., Moreau, T., Brillard-Bourdet, M., Ferrer-Di Martino, M., Borras-Cuesta, F., and Gauthier, F. (1993).J. Protein Chem. 12, 23–31.PubMedGoogle Scholar
  30. Lindahl, P., Ripoll, D., Abrahamson, M., Mort, J. S., and Storer, A. C. (1994).Biochemistry 33, 4384–4392.PubMedGoogle Scholar
  31. Machleidt, W., Thiele, U., Laber, B., Assfalg-Machleidt, I., Esterl, A., Wiegand, G., Kos, J., Turk, V., and Bode, W. (1989).FEBS Lett. 243, 234–238.PubMedGoogle Scholar
  32. Ménard, R., Carmona, E., Plouffe, C., Brömme, D., Konishi, Y., Lefebvre, J., and Storer, A. C. (1993).Febs Lett. 328, 107–110.PubMedGoogle Scholar
  33. Monsigny, M., and Mayer, R. (1983). French Patent No. 83 08051.Google Scholar
  34. Moreau, T., Esnard, F., Gutman, N., Degand, P., and Gauthier, F. (1988).Eur. J. Biochem. 173, 185–190.PubMedGoogle Scholar
  35. Moreau, T., Hoebeke, J., Lalmanach, G., Hattab, M., and Gauthier, F. (1990).Biochem. Biophys. Res. Commun. 167, 117–122.PubMedGoogle Scholar
  36. Murta, A. C. M., Perschini, P. M., Souto Pradon, T., Souza, W., Guimarães, J. A., and Scharfstein, J. (1990).Mol. Biochem. Parasitol. 43, 27–38.PubMedGoogle Scholar
  37. Musil, D., Zucic, D., Engh, R. A., Mayr, I., Huber, R., Popovic, T., Turk, V., Towatari, T., Katunuma, N., and Bode, W. (1991).EMBO J. 10, 2321–2330.PubMedGoogle Scholar
  38. North, M. J. (1992).Biol. Chem. Hoppe-Seyler 373, 401–406.PubMedGoogle Scholar
  39. North, M. J. (1994).Meth. Enzymol. 244, 523–539.PubMedGoogle Scholar
  40. Rawlings, N. D., and Barrett, A. J. (1990).J. Mol. Evol. 30, 60–71.PubMedGoogle Scholar
  41. Samsoen, C., Lebrun, E., Van Rappenbusch, R., Davoust, D., and Lalmanach, G. (1992).Magn. Reson. Chem. 30, 992–995.Google Scholar
  42. Serveau, C., Juliano, L., Bernard, P., Moreau, T., Mayer, R., and Gauthier, F. (1994).Biochimie 76, 153–158.PubMedGoogle Scholar
  43. Shaw, E. (1990).Adv. Enzymol. 63, 271–347.PubMedGoogle Scholar
  44. Shaw, E. (1994).Meth. Enzymol. 244, 649–656.PubMedGoogle Scholar
  45. Sloane, B. F., and Honn, K. V. (1984).Cancer Metastasis Rev. 3, 249–263.PubMedGoogle Scholar
  46. Stubbs, M., Laber, B., Bode, W., Huber, R., Jerala, R., Lenarcic, B., and Turk, V. (1990).EMBO J. 9, 1939–1947.PubMedGoogle Scholar
  47. Tchoupé, J. R., Moreau, T., Gauthier, F., and Bieth, J. G. (1991).Biochim. Biophys. Acta 1076, 149–151.PubMedGoogle Scholar
  48. Tian, W. X., and Tsou, C. L. (1982).Biochemistry 21, 1028–1032.PubMedGoogle Scholar
  49. Turk, V., and Bode, W. (1991).FEBS Lett. 285, 213–219.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Gilles Lalmanach
    • 1
  • Carole Serveau
    • 1
  • Michèle Brillard-Bourdet
    • 1
  • Jair R. Chagas
    • 1
    • 2
  • Roger Mayer
    • 3
  • Luiz Juliano
    • 2
  • Francis Gauthier
    • 1
  1. 1.Laboratoire d'Enzymologie et Chimie des Protéines, CNRS-URA 1334Université François Rabelais, Faculté de Médecine de ToursTours CedexFrance
  2. 2.Departamento de BiofisicaINFAR, Escola Paulista de MedicinaSão PauloBrazil
  3. 3.Laboratoire de Biochimie des Glycoconjugués et des Lectines EndogènesCentre de Biophysique Moléculaire, CNRSOrléans Cedex 2France

Personalised recommendations