Journal of Protein Chemistry

, Volume 15, Issue 1, pp 45–58 | Cite as

A fluorescence study of Tn10-encoded Tet repressor

  • Zygmunt Wasylewski
  • Pawel Kaszycki
  • Monika Drwiega
Article

Abstract

Steady-state fluorescence quenching and time-resolved measurements have been performed to resolve the fluorescence contributions of the two tryptophan residues, W43 and W75, in the subunit of the homodimer of the Tet repressor fromEscherichia coli. The W43 residue is localized within the helix-turn-helix structural domain, which is responsible for sequence-specific binding of the Tet repressor to thetet operator. The W75 residue is in the protein matrix near the tetracycline-binding site. The assignment of the two residues has been confirmed by use of single-tryptophan mutants carrying either W43 or W75. The FQRS (fluorescence-quenching-resolved-spectra) method has been used to decompose the total emission spectrum of the wild-type protein into spectral components. The resolved spectra have maxima of fluorescence at 349 and 324 nm for the W43 and W75 residues, respectively. The maxima of the resolved spectra are in excellent agreement with those found using single-tryptophan-containing mutants. The fluorescence decay properties of the wild type as well as of both mutants of Tet repressor have been characterized by carrying out a multitemperature study. The decays of the wild-type Tet repressor and W43-containing mutant can be described as being of double-exponential type. The W75 mutant decay can be described by a Gaussian continuous distribution centered at 5.0 nsec with a bandwidth equal to 1.34 nsec. The quenching experiments have shown the presence of two classes of W43 emission. One of the components, exposed to solvent, has a maximum of fluorescence emission at 355 nm, with the second one at about 334 nm. The red-emitting component can be characterized by bimolecular-quenching rate constant,kq equal to 2.6×109, 2.8×109, and 2.0×109 M−1 sec−1 for acrylamide, iodide, and succinimide, respectively. The bluer component is unquenchable by any of the quenchers used. The W75 residue of the Tet repressor has quenching rate constant equal to 0.85×109 and 0.28 × 109 M−1 sec−1 for acrylamide and succinimide, respectively. These values indicate that the W75 is not deeply buried within the protein matrix. Our results indicate that the Tet repressor can exist in its ground state in two distinct conformational states which differ in the microenvironment of the W43 residue.

Key words

Tet repressor Trp fluorescence recombinant proteins Escherichia coli 

Abbreviations

FQRS

fluorescence-quenching-resolved spectra

HTH

helix-turn-helix motif

TetR

tetracycline repressor fromE. coli

WT

wild-type TetR

W43

single point mutant with phenyloalanine substituted for tryptophan at position 75 in both subunits

W75

single point mutant with phenyloalanine substituted for tryptophan at position 43 in both subunits

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcala, J. R., Gratton, E., and Prendengarst, F. G. (1987a).Biophys. J. 51, 587–596.PubMedGoogle Scholar
  2. Alcala, J. R., Gratton, E., and Prendengarst, F. G. (1987b).Biophys. J. 51, 597–604.PubMedGoogle Scholar
  3. Altschmied, L., Baumeister, R., Pfleidererer, K., and Hillen, W. (1988).EMBO J. 7, 4011–4017.PubMedGoogle Scholar
  4. Baumeister, R., Müller, G., Hecht, B., and Hillen, W. (1992).Proteins: Struct. Funct. Genet. 14, 168–177.Google Scholar
  5. Beechem, J., and Brand, L. (1985).Annu. Rev. Biochem. 54, 43–77.PubMedGoogle Scholar
  6. Blicharska, Z., and Wasylewski, Z. (1995).J. Protein Chem., in press.Google Scholar
  7. Chabbert, M., Hillen, W., Hansen, D., Takahashi, M., and Bousquet, J. A. (1992).Biochemistry 31, 1951–1960.PubMedGoogle Scholar
  8. Chen, L. S., Longworth, J. W., and Fleming, G. R. (1987).Biophys. J. 51, 865–873.PubMedGoogle Scholar
  9. Demchenko, A. P. (1986).Ultraviolet Spectroscopy of Proteins, Springer, Berlin.Google Scholar
  10. Demchenko, A. P. (1988).Eur. Biophys. J. 16, 121–129.PubMedGoogle Scholar
  11. Eftink, M. R. (1991a). InMethods of Biochemical Analysis.Protein Structure Determination, Vol. 35 (Snelter, C. H., ed.), Wiley, New York, pp. 127–205.Google Scholar
  12. Eftink, M. R. (1991b). InTopics in Fluorescence Spectroscopy, Vol. 2 (Lakowicz, J. R., ed.), Plenum Press, New York, pp. 53–127.Google Scholar
  13. Eftink, M. R., and Ghiron, C. (1977).Biochemistry 16, 5546–5551.PubMedGoogle Scholar
  14. Eftink, M. R., and Ghiron, C. (1987).Biophys. J. 52, 467–473.PubMedGoogle Scholar
  15. Eftink, M. R., and Wasylewski, Z. (1989).Biochemistry 28, 382–391.PubMedGoogle Scholar
  16. Eftink, M. R., Ramsay, G. D., Burns, L., Maki, A. H., Mann, C. J., Matthews, C. R., and Ghiron, C. A. (1993).Biochemistry 32, 9189–9198.PubMedGoogle Scholar
  17. Hansen, D., and Hillen, W. (1987).J. Biol. Chem. 262, 12269–12275.PubMedGoogle Scholar
  18. Hansen, D., Altschmied, L., and Hillen, W. (1987).J. Biol. Chem. 262, 14030–14035.PubMedGoogle Scholar
  19. Harrison, S. C. (1991).Nature 353, 714–719.Google Scholar
  20. Hinrichs, W., Kisker, C., Düvel, M., Müller, A., Tovar, K., Hillen, W., and Saenger, W. (1994).Science 264, 418–420.PubMedGoogle Scholar
  21. Oehmichen, R., Klock, G., Altschmied, L., and Hillen, W. (1984).EMBO J. 3, 539–543.PubMedGoogle Scholar
  22. Pabo, C. O., and Lewis, M. L. (1982).Nature 298, 443–447.PubMedGoogle Scholar
  23. Petrich, J. W., Longworth, J. W., and Fleming, G. R. (1987).Biochemistry 26, 2711–2722.PubMedGoogle Scholar
  24. Royer, C. A. (1992).Biophys. J. 63, 741–750.PubMedGoogle Scholar
  25. Stryjewski, W., and Wasylewski, Z. (1986).Eur. J. Biochem. 158, 547–553.PubMedGoogle Scholar
  26. Wasylewski, Z., and Eftink, M. R. (1987).Biochim. Biophys. Acta 915, 331–341.PubMedGoogle Scholar
  27. Wasylewski, Z., Sucharski, P., Wolak, A., and Eftink, M. R. (1987).Biochim. Biophys. Acta 913, 210–218.PubMedGoogle Scholar
  28. Wasylewski, Z., Kaszycki, P., Guz, A., and Stryjewski, W. (1988a).Eur. J. Biochem. 178, 471–476.PubMedGoogle Scholar
  29. Wasylewski, Z., Koloczek, H., and Wasniowska, A. (1988b).Eur. J. Biochem. 172, 719–724.PubMedGoogle Scholar
  30. Wasylewski, Z., Koloczek, H., Wasniowska, A., and Slizowska, K. (1992).Eur. J. Biochem. 206, 235–242.PubMedGoogle Scholar
  31. Wissmann, A., Baumeister, R., Müller, G., Hecht, B., Helbl, V., Pfleiderer, K., and Hillen, W. (1991a).EMBO J. 10, 4145–4152.PubMedGoogle Scholar
  32. Wissmann, A., Wray, L. V., Jr., Somaggio, K., Baumeister, R., Geissendörfer, M., and Hillen, W. (1991b).Genetics 128, 225–232.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Zygmunt Wasylewski
    • 1
  • Pawel Kaszycki
    • 1
  • Monika Drwiega
    • 1
  1. 1.Department of Physical Biochemistry, Institute of Molecular BiologyJagiellonian UniversityKrakówPoland

Personalised recommendations