Advertisement

Foundations of Physics

, Volume 16, Issue 6, pp 573–584 | Cite as

Existence of “free will” as a problem of physics

  • Asher Peres
Part VI. Invited Papers Dedicated To John Archibald Wheeler

Abstract

The proof of Bell's inequality is based on the assumption that distant observers can freely and independently choose their experiments. As Bell's inequality isexperimentally violated, it appears that distant physical systems may behave as a single, nonlocal, indivisible entity. This apparent contradiction is resolved. It is shown that the “free will” assumption is, under usual circumstances, an excellent approximation.

I have set before you life and death, blessing and cursing: therefore choose life....

Deuteronomy XXX, 19

Keywords

Physical System Apparent Contradiction Excellent Approximation Distant Observer Usual Circumstance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Bell,Physics 1, 195 (1964).Google Scholar
  2. 2.
    A. Peres and W. H. Zurek,Am. J. Phys. 50, 807 (1982).Google Scholar
  3. 3.
    A. Peres,Found. Phys. 14, 1131 (1984).Google Scholar
  4. 4.
    G. Iooss, R. H. G. Helleman, and R. Stora, eds.,Chaotic Behavior of Deterministic Systems (North-Holland, Amsterdam, 1983).Google Scholar
  5. 5.
    A. Landé,Foundations of Quantum Theory (Yale University Press, New Haven, 1955), p. 4.Google Scholar
  6. 6.
    W. Perrie, A. J. Duncan, H. J. Beyer, and H. Kleinpoppen,Phys. Rev. Lett. 54, 1790 (1985).Google Scholar
  7. 7.
    F. James,Rep. Prog. Phys. 43, 1145 (1980).Google Scholar
  8. 8.
    A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).Google Scholar
  9. 9.
    N. Bohr,Phys. Rev. 48, 696 (1935).Google Scholar
  10. 10.
    A. Aspect, J. Dalibard, and G. Roger,Phys. Rev. Lett. 49, 1804 (1982).Google Scholar
  11. 11.
    J. S. Bell,J. Phys. C 2, 41 (1980).Google Scholar
  12. 12.
    A. Peres,Am. J. Phys. 46, 745 (1978).Google Scholar
  13. 13.
    A. Peres,Am. J. Phys. 52, 644 (1984).Google Scholar
  14. 14.
    R. L. Pfleegor and L. Mandel,Phys. Rev. 159, 1084 (1967).Google Scholar
  15. 15.
    S. J. Feingold and A. Peres,J. Phys. A 13, 3187 (1980).Google Scholar
  16. 16.
    N. Cufaro-Petroni, A. Garuccio, F. Selleri, and J. P. Vigier,C. R. Acad. Sci. Paris B 290, 11 (1980).Google Scholar
  17. 17.
    N. Herbert,Found. Phys. 12, 1171 (1982).Google Scholar
  18. 18.
    G. C. Ghirardi, A. Rimini, and T. Weber,Lett. Nuovo Cimento 27, 293 (1980).Google Scholar
  19. 19.
    D. N. Page,Phys. Lett. A 91, 57 (1982).Google Scholar
  20. 20.
    A. Shimony, inProc. International Symposium on Foundations of Quantum Mechanics (Phys. Soc. Japan, Tokyo, 1984).Google Scholar
  21. 21.
    A. Peres, “When is a quantum measurement?”,Am. J. Phys. 54 (1986), in press.Google Scholar
  22. 22.
    D. Finkelstein, inParadigms and Paradoxes, R. C. Colodny, ed. (Univ. Pittsburgh Press, 1971), Vol. V; reprinted inLogico-Algebraic Approach to Quantum Mechanics, C. A. Hooker, ed. (Reidel, Dordrecht, 1975), Vol. II, pp. 141–160.Google Scholar
  23. 23.
    H. Paul,Am. J. Phys. 53, 318 (1985).Google Scholar
  24. 24.
    A. Peres,Am. J. Phys. 43, 1015 (1975).Google Scholar
  25. 25.
    A. Peres and L. S. Schulman,Int. J. Theor. Phys. 6, 377 (1972).Google Scholar
  26. 26.
    L. Gatlin,Int. J. Theor. Phys. 19, 25 (1980).Google Scholar
  27. 27.
    J. A. Wheeler and R. P. Feynamn,Rev. Mod. Phys. 21, 425 (1949).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Asher Peres
    • 1
  1. 1.Department of PhysicsTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations