Theoretical and Mathematical Physics

, Volume 74, Issue 2, pp 103–108 | Cite as

Infrared asymptotics of gluon Green's functions in covariant gauge

  • B. A. Arbuzov
  • É. É. Boos
  • A. I. Davydychev


It is considered whether the singular infrared behavior D(k) ∼ M2/k4 of the gluon propagator and the corresponding asymptotic behavior of the gluon vertices are compatible with the Schwinger-Dyson equation in a covariant gauge. For the investigated asymptotic behaviors, the two-loop terms most singular in the infrared region are calculated. It is shown that there exists a distinguished covariant gauge in which one can find a self-consistent description of the lowest gluon and ghost Green's functions in the infrared region of QCD.


Asymptotic Behavior Ghost Infrared Region Gluon Propagator Infrared Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. Mandelstam, Phys. Rev. D,20, 3223 (1979); M. Baker, J. S. Ball, and F. Zachariasen, Nucl. Phys. B,186, 531 (1981).CrossRefGoogle Scholar
  2. 2.
    A. I. Alekseev, B. A. Arbuzov, and B. A. Baikov, Teor. Mat. Fiz.,52, 187 (1982).Google Scholar
  3. 3.
    D. Barkai, K. J. M. Moriarty, and C. Rebbi, Phys. Rev. D,30, 2201 (1984).Google Scholar
  4. 4.
    M. Baker and F. Zachariasen, Phys. Lett. B,108, 206 (1982).Google Scholar
  5. 5.
    B. A. Arbuzov, Phys. Lett. B,125, 497 (1983).Google Scholar
  6. 6.
    B. A. Arbuzov, E. E. Boos, S. S. Kurennoi, and K. Sh. Turashvili, Yad. Fiz.,40, 386 (1984).Google Scholar
  7. 7.
    A. A. Bykov, I. M. Dremin, and A. V. Leonidov, Usp. Fiz. Nauk,143, 3 (1984).Google Scholar
  8. 8.
    K. R. Natroshvili, A. A. Khelashvili, and V. Yu. Khmaladze, Teor. Mat. Fiz.,65, 360 (1985).Google Scholar
  9. 9.
    A. I. Alekseev and V. F. Edneral, “Tensor structure of polarization operator of gluons in axial gauge in the infrared region,” Preprint 86-46 [in Russian], Institute of High Energy Physics, Serpukhov (1986).Google Scholar
  10. 10.
    V. F. Müller and W. Rühl, Ann. Phys. (N.Y.),133, 240 (1981); S. Caracciolo, G. Curci, and P. Menotti, Phys. Lett. B,113, 311 (1982).Google Scholar
  11. 11.
    W. Marchiano and H. Pagels, Phys. Rep. C,36, 137 (1978).Google Scholar
  12. 12.
    A. I. Alekseev, B. A. Arbuzov, and V. A. Baikov, Yad. Fiz.,34, 1374 (1981); A. I. Alekseev, V. A. Baikov, and É. É. Boos, Teor. Mat. Fiz.,54, 388 (1983).Google Scholar
  13. 13.
    L. D. Solov'ev, Dokl. Akad. Nauk SSSR,110, 203 (1956); D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys. (N.Y.),13, 379 (1961).Google Scholar
  14. 14.
    V. A. Fock, Izv. Akad. Nauk SSSR, OMEN, Ser. Fiz., No. 4–5, 551 (1937); Studies in Quantum Field Theory [in Russian], Leningrad State University, Leningrad (1957), p. 141; J. Schwinger, Phys. Rev.,82, 664 (1951).Google Scholar
  15. 15.
    S. K. Kim and M. Baker, Nucl. Phys. B,164, 152 (1980); A. I. Alekseev, Yad. Fiz.,33, 516 (1981).Google Scholar
  16. 16.
    A. A. Slavnov, Teor. Mat. Fiz.,10, 153 (1972); J. C. Taylor, Nucl. Phys. B,33, 436 (1971).Google Scholar
  17. 17.
    A. T. Hearn, REDUCE-2 User's Manual, Salt Lake City (1974); V. F. Edneral, A. P. Kryukov, and A. Ya. Rodionov, The Language of Analytic Calculations REDUCE, Part I [in Russian], Moscow State University, Moscow (1983).Google Scholar
  18. 18.
    K. G. Chetyrkin, A. L. Kataev, and F. V. Tkachov, Nucl. Phys. B,174, 345 (1980); A. A. Vladimirov, Teor. Mat. Fiz.,43, 210 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • B. A. Arbuzov
  • É. É. Boos
  • A. I. Davydychev

There are no affiliations available

Personalised recommendations