Biological Cybernetics

, Volume 25, Issue 4, pp 181–194 | Cite as

Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception

  • E. L. Schwartz
Article

Abstract

The retinotopic mapping of the visual field to the surface of the striate cortex is characterized as a longarithmic conformal mapping. This summarizes in a concise way the observed curve of cortical magnification, the linear scaling of receptive field size with eccentricity, and the mapping of global visual field landmarks. It is shown that if this global structure is reiterated at the local level, then the sequence regularity of the simple cells of area 17 may be accounted for as well. Recently published data on the secondary visual area, the medial visual area, and the inferior pulvinar of the owl monkey suggests that same global logarithmic structure holds for these areas as well. The available data on the structure of the somatotopic mapping (areaS-1) supports a similar analysis. The possible relevance of the analytical form of the cortical receptotopic maps to perception is examined and a brief discussion of the developmental implications of these findings is presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlfors,L.: Complex analysis, New York: McGraw Hill 1966Google Scholar
  2. 2.
    Allman,J.M., Kaas,J.H.: A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aoutus Trivirgatus). Brain Res.31, 85–105 (1971a)PubMedGoogle Scholar
  3. 3.
    Allman,J.M., Kaas,J.H.: Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus Trivirgatus). Brain Res.35, 89–106 (1971b)PubMedGoogle Scholar
  4. 4.
    Allman,J.M., Kaas,J.H.: A representation of the visual field in the inferior nucleus of the pulvinar in the owl monkey. Brain Res.40, 291–302 (1972)PubMedGoogle Scholar
  5. 5.
    Allman,J.M., Kaas,J.H.: The organization of the second visual area (V–II) in the owl monkey: A second order transformation of the visual hemifield. Brain Res.76, 247–265 (1974)PubMedGoogle Scholar
  6. 6.
    Allman,J.M., Kaas,J.H.: A representation of the visual field on the medialwall of occipital-parietal cortex in the owl monkey. Science191, 572–575 (1976)PubMedGoogle Scholar
  7. 7.
    Apter,J.T.: Projection of the retina on the superior colliculus of cats. J. Neurophysiol.8, 123–134 (1945)Google Scholar
  8. 8.
    Arbib,M.A.: The metaphorical brain. New York: Wiley 1972Google Scholar
  9. 9.
    Bishop,P.O., Kozak,W., Levick,W.R., Vakkur,G.J.: The determination of the projection of the visual field onto the lateral geniculate nucleus in the cat. J. Physiol.163, 503–539 (1962)PubMedGoogle Scholar
  10. 10.
    Chaikin,G., Wieman,C.: Submitted to Computer Graphics and Information Processing (1976)Google Scholar
  11. 11.
    Daniel,P.M., Whitteridge,D.: The representation of the visual field on the cerebral cortex in monkeys. J. Physiol.159, 203–221 (1961)Google Scholar
  12. 12.
    Doty,R.W.: Functional significance of the topographical aspects of the retino-cortical projection. In: The visual system: Neurophysiology and psychophysics. pp. 228–245 (Jung,R. ed). Berlin - Göttingen - Heidelberg: Springer, 1961Google Scholar
  13. 13.
    Drager,U.C., Hubel,D.H.: Topography of visual and somato-sensory projections to mouse superior colliculus. J. Neurophysiol.39, 91–103 (1976)PubMedGoogle Scholar
  14. 14.
    Gibson,J.J.: The senses as perceptual systems. Boston: Houghton Miflin 1966Google Scholar
  15. 15.
    Herman,G.T., Rozenberg,G.: Developmental systems and languages, Amsterdam, North Holland 1975Google Scholar
  16. 16.
    Hubel,D.H., Wiesel,T.N.: Receptive fields, binocular interaction and functional architecture in the cats visual cortex. J. Physiol.160, 106–154 (1962)PubMedGoogle Scholar
  17. 17.
    Hubel,D.H., Wiesel,T.N.: Sequence regularity and geometry of orientation columns in the monkey striate cortex. J. comp. Neurol.158, 267–293 (1974a)PubMedGoogle Scholar
  18. 18.
    Hubel,D.H., Wiesel,T.N.: Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor. J. comp. Neurol.158, 295–302 (1974b)PubMedGoogle Scholar
  19. 19.
    Julesz,B.: Foundations of cyclopean perception. Chicago: University of Chicago Press 1971Google Scholar
  20. 20.
    Lorente de No: Anatomy of the eight nerve: the central projection of the nerve endings of the internal ear Laryngoscope42, 1–38 (1933)Google Scholar
  21. 21.
    Mountcastle,V.: Modality and topographic properties of single neurons of cats somatic sensory cortex. J. Neurophysiol.20, 408–434 (1957)PubMedGoogle Scholar
  22. 22.
    Oppenheim,A.V.: Nonlinear filtering of multiplied and convolved signals. Proc. IEEE56, 1264–1291 (1968)Google Scholar
  23. 23.
    Polyak,S.:The retina. Chicago: University of Chicago Press, 1941: Chicago: Chicago Press, 1957Google Scholar
  24. 24.
    Richards,W.: Apparent modifiability of receptive fields during accomodation and convergence and a model for size constancy. Neurophysiologia5, 63–72 (1967a)Google Scholar
  25. 25.
    Richards,W.: Size scaling and binocular rivalry. J. Opt. Soc. Amer.57, 576 (1967b)Google Scholar
  26. 26.
    Somjen,G.: Sensory coding in the mammalian nervous system. New York: Appleton-Century-Crofts 1972Google Scholar
  27. 27.
    Stone,J.: A quantitative analysis of the distribution of ganglion cells in the cats retina, J. comp. Neurol.124, 337–352 (1965)PubMedGoogle Scholar
  28. 28.
    Sutherland,N.S.: Outlines of theory of visual pattern recognition in animals and man. Proc. roy. Soc. B171, 297–317 (1968)Google Scholar
  29. 29.
    Talbot,S.A., Marshall,W.H.: Physiological studies on neural mechanisms of visual localization and discrimination. Amer. J. Opthal.24, 1255–1263 (1941)Google Scholar
  30. 30.
    Towe,A.L.: Notes on the hypothesis of columnar organization in somatosensory cerebral cortex. Brain Behav. Evol.11, 16–47 (1975)PubMedGoogle Scholar
  31. 31.
    Thom,R.: Structural stability and morphogenesis. New York: W. A. Benjamin 1975Google Scholar
  32. 32.
    Thompson,D'Arcy: On growth and form. Cambridge: University Press 1961Google Scholar
  33. 33.
    Walker,A.E.: Normal and pathological physiology of the thalamus. In: Introduction to stereotaxis with an atlas of the human brain pp. 291–316, Vol. I. Schaltenbrand,G., Bailey,P. (Eds.) Stuttgart: Thieme 1959Google Scholar
  34. 34.
    Werner,G., Whitsel,B.: Topology of body representation in somatosensory area S-I of primates. J. Neurophysiol.31, 856–869 (1968)PubMedGoogle Scholar
  35. 35.
    Werner,G., Whitsel,B.C.: Functional organization of the somatosensory cortex. In: Handbook of Sensory Physiology Vol. II, pp. 621–700 (Iggo, ed.), Berlin-Heidelberg-New York Springer 1973Google Scholar
  36. 36.
    Woolsey,C.N., Marshall,W.H., Bard,P.: Representation of cutaneous tactile sensibility in the cerebral cortex of the Monkey as indicated by evoked potentials. Bull. Johns Hopkins Hosp.70, 399–441 (1942)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • E. L. Schwartz
    • 1
  1. 1.Brain Research LaboratoriesNew York Medical CollegeNew YorkUSA

Personalised recommendations