Inventiones mathematicae

, Volume 121, Issue 1, pp 211–222 | Cite as

A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound

  • Arnaldo Garcia
  • Henning Stichtenoth


For an algebraic function fieldF having a finite constant field, letg(F) (resp.N(F)) denote the genus ofF (resp. the number of places ofF of degree one). We construct a tower of function fields\(F_1 \subseteq F_2 \subseteq F_3 \subseteq \ldots \) over\(\mathbb{F}_{q^2 } \) such that the ratioN(F i )/g(F i ) tends to the Drinfeld-Vladut boundq−1.


Function Field Algebraic Function Constant Field Finite Constant Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Drinfeld, V. G., Vladut, S. G.: Number of Points of an Algebraic Curve. Func. Anal.17, 53–54 (1983)Google Scholar
  2. 2.
    Goppa, V. D.: Codes on Algebraic Curves. Soviet Math. Dokl.24, No. 1, 170–172 (1981)Google Scholar
  3. 3.
    Goppa, V. D.: Algebraico-geometric Codes. Math. U.S.S.R. Izvestiya21, 75–91 (1983)Google Scholar
  4. 4.
    Ihara, Y.: Some Remarks on the Number of Rational Points of Algebraic Curves over Finite Fields. J. Fac. Sci. Tokyo28, 721–724 (1981)Google Scholar
  5. 5.
    Manin, Y. I.: What is the Maximum Number of Points on a Curve over\(\mathbb{F}_2 \)?. J. Fac. Sci. Tokyo28, 715–720 (1981)Google Scholar
  6. 6.
    Manin, Y. I., Vladut, S. G.: Linear Codes and Modular Curves. J. Soviet. Math.30, 2611–2643 (1985)Google Scholar
  7. 7.
    Moreno, C.: Algebraic Curves over Finite Fields. (Cambridge Tracts in Math, vol.97), Cambridge University Press, Cambridge, 1991Google Scholar
  8. 8.
    Rück, H. G., Stichtenoth, H.: A Characterization of Hermitian Function Fields over Finite Fields. J. Reine Angew. Math.457, 185–188 (1994)Google Scholar
  9. 9.
    Schoof, R.: Algebraic Curves over\(\mathbb{F}_2 \) with Many Rational Points. J. of Number Th.41, 6–14 (1992)Google Scholar
  10. 10.
    Serre, J.-P.: Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini. C. R. Acad. Sci. Paris296, 397–402 (1983); = Oe [128].Google Scholar
  11. 11.
    Serre, J.-P.: Résumé des cours de 1983–1984. In: Annuaire du Collège de France, 79–83 (1984); = Oe [132].Google Scholar
  12. 12.
    Stichtenoth, H.: Algebraic Function Fields and Codes. (Springer Universitext), Berlin-Heidelberg-New York: Springer 1993Google Scholar
  13. 13.
    Tsfasman, M. A., Vladut, S. G., Zink, T.: Modular Curves, Shimura Curves and Goppa Codes, better than the Varshamov-Gilbert Bound. Math. Nachr.109, 21–28 (1982)Google Scholar
  14. 14.
    Tsfasman, M. A., Vladut, S. G.: Algebraic-Geometric Codes. Kluwer Acad. Publ., Dordrecht-Boston-London, 1991Google Scholar
  15. 15.
    Xing, C. P.: Multiple Kummer Extensions and the Number of Prime Divisors of Degree One in Function Fields. J. of Pure and Appl. Algebra84, 85–93 (1993)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Arnaldo Garcia
    • 1
  • Henning Stichtenoth
    • 2
  1. 1.Instituto de Matemática Pura e Aplicada IMPARio de JaneiroBrazil
  2. 2.Fachbereich 6 Mathematik und InformatikUniversität GH EssenEssenGermany

Personalised recommendations