International Journal of Theoretical Physics

, Volume 12, Issue 1, pp 69–78 | Cite as

Generalization of Nambu's mechanics

  • Isaac Cohen
Article

Abstract

We look for a generalization of the mechanics of Hamilton and Nambu. We have found the equations of motion of a classical physical system ofS basic dynamic variables characterized byS – 1 constants of motion and by a function of the dynamical variables and the time whose value also remains constant during the evolution of the system. The numberS may be even or odd. We find that any locally invertible transformations are canonical transformations. We show that the equations of motion obtained can be put in a form similar to Nambu's equations by means of a time transformation. We study the relationship of the present formalism to Hamiltonian mechanics and consider an extension of the formalism to field theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appell, P. (1953).Traité de Mecanique Rationalle. Gauthier-Villars, Paris.Google Scholar
  2. Goldstein, H. (1964).Classical Mechanics. Addison-Wesley Publishing Company, Tokyo.Google Scholar
  3. Kilmister, C. W. (1964).Hamiltonian Dynamics. Longmans, Green and Co., London.Google Scholar
  4. Landau, L. and Lifshitz, E. M. (1969).Mécanique. Editions de la Paix, Moscow.Google Scholar
  5. de La Vallée Poussin, Ch-J. (1949).Cours de Analyse Infinitesimale. Gauthier-Villars, Paris.Google Scholar
  6. Nambu, Y. (1973).Physical Review D 7, 2405.Google Scholar
  7. Pars, L. A. (1968).A Treatise on Analytical Dynamics. John Wiley & Sons, New York.Google Scholar

Copyright information

© Plenum Publishing Company Limited 1975

Authors and Affiliations

  • Isaac Cohen
    • 1
  1. 1.Centro de FísicaInstituto Venezolano de Investigaciones Científicas (IVIC)Caracas 101Venezuela

Personalised recommendations